Il ruolo delle piante superiori nei sistemi biorigenerativi di supporto alla vita nello Spazio
Allo stato attuale, le risorse necessarie per missioni spaziali brevi sono interamente trasportate dalla Terra, tuttavia questo non sarà possibile per missioni di lunga durata, per motivi di natura tecnica ed economica. Infatti, è calcolato che ciascun astronauta necessita di circa 30 kg al giorno di risorse (cibo, acqua, ossigeno), pertanto, considerando una permanenza nello Spazio di 2 anni (tempo minimo per una missione su Marte con gli attuali sistemi di propulsione), il fabbisogno sarebbe di circa 22 t per astronauta. In questa prospettiva, il rifornimento periodico dalla Terra, e il parallelo smaltimento dei rifiuti prodotti dall’equipaggio, risulterebbe logisticamente difficile ed economicamente dispendioso.
La corretta nutrizione e il benessere degli astronauti è una condizione fondamentale per la riuscita delle missioni spaziali. La preparazione del cibo e il confezionamento rappresentano aspetti critici: l’alimento deve essere compatto, per evitare che in condizioni di ridotta gravità eventuali frammenti possano disperdersi nell’ambiente ed essere inalati o danneggiare strumenti, e avere un ridotto contenuto di umidità per rallentare il deterioramento e prevenire lo sviluppo di odori sgradevoli. L’uso di alluminio, a esempio, garantisce una buona durata ma non consente il riscaldamento in microonde e aumenta il peso delle confezioni rispetto alla plastica. Nel corso della conservazione, inoltre, le caratteristiche organolettiche (sapore, colore, consistenza) e nutrizionali (es. contenuto vitaminico) subiscono alterazioni che possono rendono l’alimento meno appetibile e sano, imponendo il ricorso a integratori chimici.
L’esigenza di una corretta alimentazione appare anche più importante se si considera che le condizioni di vita nello Spazio (es. ridotta gravità) possono predisporre all’insorgenza di diverse patologie (es. osteoporosi, atrofia muscolare), il cui rischio può essere ridotto dall’assunzione di composti funzionali presenti nel cibo (es. antiossidanti del pomodoro, proteine della soia).
Sulla base di tali presupposti, è evidente che la realizzazione di missioni di lunga durata è subordinata alla messa a punto di sistemi in grado di rigenerare le risorse (aria e acqua), integrare la dieta dell’equipaggio e riciclare i rifiuti del metabolismo umano. Tale concetto è alla base dei Sistemi Biorigenerativi di Supporto alla Vita (Bioregenerative Life Support Systems, BLSSs), ecosistemi artificiali basati sullo scambio di materiali ed energia tra compartimenti, destinati all’uomo e a componenti biologiche diverse, in un ciclo ideale in cui ciascun compartimento utilizza prodotti di scarto dell’altro.
Numerosi organismi (microalghe, batteri, pesci, piante superiori) sono stati proposti come componenti biologiche, tuttavia ad oggi le piante rappresentano i rigeneratori più promettenti, grazie alla loro relazione “complementare” con l’uomo. Infatti, semplificando, le piante sono in grado di rigenerare l’aria assorbendo anidride carbonica ed emettendo ossigeno attraverso la fotosintesi, purificare l’acqua mediante la traspirazione, e produrre cibo fresco impiegando scarti dell’equipaggio (feci, urine). Nell’ottica di lunghe permanenze nello Spazio, inoltre, è stato dimostrato che la presenza di piante mitiga lo stress psicologico della missione e delle condizioni di isolamento, creando un ambiente più simile a quello terrestre e offrendo l’opportunità di un’attività ricreativa.
Allo stato attuale, i BLSSs non sono ancora impiegati nello Spazio, a causa del consumo energetico e di peso e volume elevati, e nel prossimo futuro la coltivazione in orbita sarà probabilmente limitata a moduli di dimensione ridotta per studi sulla fisiologia e la produttività delle piante e per la produzione di modeste quantità di cibo fresco. In un futuro non lontano, tuttavia, è ipotizzabile che stazioni orbitanti e piattaforme planetarie ospiteranno BLSSs di larga scala, in grado di garantire una parziale autonomia alle colonie spaziali. In questa ottica, le basi planetarie potrebbero anche sfruttare risorse disponibili localmente (es. “regolite” lunare come substrato di coltivazione) superando le attuali limitazioni al trasporto di materiali e la presenza di gravità, sebbene ridotta rispetto a quella terrestre (1/6 g sulla Luna e 1/3 g su Marte), consentirebbe di risolvere i problemi legati all’assenza di gravità delle stazioni orbitanti e l’adozione di tecnologie di coltivazione simili a quelle comunemente adottate sulla Terra.
Diverse specie vegetali, con requisiti nutrizionali adatti a soddisfare i fabbisogni alimentari dell’equipaggio, sono studiate come candidate per i BLSSs (grano tenero e grano duro, patata, soia, pomodoro, ecc.). Nell’ottica di una produzione di cibo elevata e costante, tuttavia, un’intensa attività di ricerca è ancora necessaria per definire protocolli di coltivazione in grado di ottimizzare la produttività e la qualità del cibo, minimizzando gli scarti.
Roberta Paradiso, Roberta Buonomo & Stefania De Pascale (Università di Napoli)
Per saperne di più: https://www.dipartimentodiagraria.unina.it/
19/02/2015