La luce è la sorgente di energia utilizzata dalla piante per la fotosintesi clorofilliana, ovvero il processo che consente alla pianta di “nutrirsi” e crescere, producendo al contempo ossigeno che viene liberato nell’aria. Le piante per vivere hanno quindi bisogno di luce e questo è vero sulla Terra come nello Spazio. La differenza fondamentale della crescita di piante nello Spazio sta nel fatto che la luce solare non è immediatamente fruibile come sulla Terra, o perché è eccessiva, come nei sistemi orbitali dove è quella diretta proveniente dal Sole (che è circa tre volte superiore alla massima che colpisce il suolo alle nostre latitudini), o perché non disponibile (come potrebbe essere nell’ambiente all’interno di navicelle spaziali o in serre planetarie schermate contro le radiazioni), o perché è molto ridotta a causa della maggiore distanza dal Sole e delle diverse condizioni ambientali presenti sugli altri pianeti.
Sistema di illuminazione a fibre ottiche integrato in un sistema capace di convertire la radiazione solare per ottenere luce, energia termica ed energia elettrica
Basta pensare ai diversi cicli giorno/notte (sulla Luna le notti durano circa 2 settimane), alle grandi tempeste di sabbia su Marte (che schermano la luce e la cui di durata non è prevedibile), all’assenza di un atmosfera come quella terrestre, che filtra o attenua le componenti dannose della luce solare. Tutto ciò fa sì che le piante non ricevano la luce nel modo in cui sono “abituate” sulla Terra, rendendo molto complicato, se non impossibile, la loro crescita.
Attualmente sono in fase di studio diversi sistemi che utilizzano la luce solare per illuminare le serre spaziali. Tali sistemi, più o meno complessi, utilizzano degli specchi parabolici, o altre tipo di ottiche, che concentrano i flussi luminosi in fibre ottiche che portano e distribuiscono la luce all’interno delle serre (Fig.1 e Fig.2). Tuttavia, per quanto detto, le prestazioni di tali sistemi sono direttamente legate alle condizioni ambientali e non risolvono completamente i problemi descritti precedentemente. L’indisponibilità totale o ridotta di luce naturale porta quindi alla necessità di progettare e realizzare degli impianti di illuminazione artificiale che siano complementari o alternativi a quelli che sfruttano la luce del sole, in grado di rispettare il ciclo biologico selezionato delle piante coltivate (che potrebbe anche essere diverso dal ciclo giorno-notte naturale) e di fornire la giusta quantità (e qualità) di luce per garantire una corretta crescita delle stesse. Tali sistemi devono garantire:
· Un’elevata efficienza di conversione tra energia elettrica e radiazione luminosa necessaria per la fotosintesi clorofilliana.
· Flessibilità per quello che riguarda la qualità della luce (cioè la possibilità di modificare la composizione dello spettro luminoso).
· Flessibilità per quello che riguarda l’intensità (cioè la possibilità di programmare la quantità di luce che raggiunge le piante) in maniera da garantire corretti cicli giorno/notte.
· Basso carico termico (parte dell’energia elettrica si trasforma in calore che può creare problemi nel controllo termico delle camere di crescita).
· Peso e volume ridotti delle sorgenti luminose e dei sistemi ad esse associati (in una missione spaziale è obbligatorio risparmiare peso al lancio).
· Durata e affidabilità delle sorgenti luminose (per limitare le attività di manutenzione e gli eventi di sostituzione).
: Il sistema integrato con serre ricoperte da “regolite” sulla superficie lunare
Per le caratteristiche del loro spettro luminoso e per l’alta intensità di luce emessa, le lampade che potrebbero essere prese in considerazione per una serra spaziale sono quelle ai vapori di sodio (HPS), quelle agli ioduri metallici (MH) o le lampade a fluorescenza.
Le lampade ai Vapori di Sodio (HPS) hanno uno spettro luminoso paragonabile a quella del Sole in estate e sono ricche delle componenti nel rosso e arancione. Le lampade HPS standard mancano della parte blu dello spettro luminoso. Per ovviare a questo problema da alcuni anni esistono in commercio lampade HPS ad ampio spettro dotate della capacità di emettere anche luce nel blu. Queste ultime danno la possibilità di impiegare un solo tipo di lampada per tutto il ciclo di vita della pianta, sia per la crescita vegetativa (fase di crescita della pianta prima della fioritura) che per la fase riproduttiva (fioritura e fruttificazione).
Le lampade agli Ioduri Metallici (MH) hanno uno spettro luminoso con una maggiore presenza delle componenti nel blu e nel violetto rispetto alle lampade HPS, pertanto sono indicate soprattutto nella fase di crescita vegetativa. Anche in questo caso esistono dei prodotti specifici per l’utilizzo in serra, che offrono migliori prestazioni rispetto alle lampade standard.
Le lampade a fluorescenza hanno una resa minore rispetto a quelle agli ioduri metallici ma possono essere una valida alternativa nelle fasi iniziali del ciclo di sviluppo delle piante visto i costi ridotti d’acquisto e di gestione. Inoltre, hanno il vantaggio di produrre meno calore e interferiscono meno con i sistemi di controllo della temperatura in serra. La loro evoluzione ha portato sul mercato lampade a fluorescenza compatte con prestazione maggiori e consumi contenuti.
Tuttavia, le lampade descritte non risolvono alcuni dei problemi indicati sopra. In particolare non hanno lunga durata e quindi sarebbe necessario un gran numero di lampade di riserva con conseguente aumento del carico da trasportare e delle attività di manutenzione richieste. Inoltre sono delicate e potrebbero non resistere alle sollecitazioni al lancio. Infine, richiedono una grande potenza che potrebbe non essere disponibile nei luoghi di installazione delle serre.
Da questo punto di vista i pannelli a LED (Light Emitting Diode) sembrano la soluzione ideale per serre da costruire nello spazio, per camere di crescita a bordo di stazioni spaziali orbitanti o navicelle spaziali. I LED hanno una durata molto maggiore delle lampade descritte (100.000 ore rispetto alle 24.000 ore delle lampade a vapori di sodio), sono dotati di ampia flessibilità in termini di composizione dello spettro luminoso di emissione (nei sistemi a LED è possibile combinare le diverse componenti di coloro) che di intensità luminosa (cosa che li rende molto facili da utilizzare in sistemi automatici), non hanno bisogno di una grande potenza di alimentazione e non generano molto calore. Per questi motivo gli apparati per gli esperimenti di crescita delle piante a bordo della ISS implementano questa soluzione. Un esempio è camera di crescita VEGGIE (immagine di copertina), installata a bordo della ISS nell’estate del 2014.
Ovviamente le lampade, di qualsiasi tipo siano, richiedono energia elettrica per essere alimentate, e questo pone un altro problema. Come si genera l’energia necessaria ad alimentare i sistemi di illuminazione (ma più in generale per tutti i sistemi che caratterizzano un struttura spaziale)?
La risposta è semplice. E’ ancora il Sole e la possibilità di trasformare la sua energia luminosa attraverso i pannelli fotovoltaici. Tutti i satelliti, non appena arrivano in orbita dispiegano i loro pannelli fotovoltaici per iniziare a generare l’energica elettrica che serve al funzionamento dei vari sistemi. La stessa ISS è dotata di quattro coppie di pannelli, ognuna delle quali misura 73 metri da un’estremità all’altra. Tutte le sonde e i rover mandati su altri pianeti sono dotati di analoghi pannelli fotovoltaici. Una serra su un altro pianeta, piuttosto che a bordo di qualsiasi piattaforma spaziale, non potrà fare a meno di utilizzare questa tecnologia per avere energia elettrica disponibile.
Antonio Ceriello, Giuseppe De Chiara – Telespazio