Tag: ISS

Una zuppa di legumi a gravità zero e… tutto gusto!

Fra i piatti del bonus food di Samantha Cristoforetti, il menu di qualitá creato dallo chef Stefano Polato e dall’azienda torinese Argotec, oltre al pollo di cui abbiamo parlato la scorsa settimana si trova anche una zuppa di legumi.

Ma non si tratta di legumi qualsiasi: i legumi scelti per questo piatto sono infatti provenienti da Presidi Slowfood e sono  la piattella canavesana, la lenticchia di Ustica, la fava di Carpino e il cece nero della Murgia carsica. I legumi sono un elemento da rivalutare per una dieta sana, equilibrata e anche gustosa!

I legumi della zuppa "spaziale" fotografati da Samantha Cristoforetti. Credits: ESA/NASA

I legumi della zuppa “spaziale” fotografati da Samantha Cristoforetti. Credits: ESA/NASA

Come ci ha raccontato Stefano Polato, “la zuppa di legumi preparata per Samantha è certamente l’esempio lampante del fatto che se c’è una scelta accurata della materia prima il risultato è sempre garantito. Utilizzare legumi come quelli scelti per la missione Futura, infatti, significa non solo assicurare un valore nutritivo accentuato rispetto alla norma, ma anche avere gusti e sensazioni particolari, sempre gradevoli. In ogni caso, la cosa che più mi ha stupito è stato il risvolto sociale di questa ricetta, che ha permesso a me e al mio team di conoscere direttamente i produttori. È stato un incontro davvero entusiasmante. Dalla loro passione sfrenata, che è il vero valore aggiunto di ogni prodotto, si può facilmente capire per quale motivo un legume venga selezionato da Slow Food e perché sia così buono.

Durante la preparazione nello Space Food Lab, infine, è stato molto importante fare attenzione alle caratteristiche intrinseche degli ingredienti, come il gusto e la consistenza, conservandole intatte anche a 24 mesi dalla produzione. Concludendo, mi permetto di dire che la zuppa di Argotec non è stata pensata solo per Samantha, ma che i legumi andrebbero consumati molto più spesso nella nostra dieta, anche più volte a settimana

E per la Terra? Mandateci la foto della vostra zuppa di legumi preferita…aspettiamo le vostre ricette! 

Ne volete sapere di più sui legumi che hanno creato questa nutriente zuppa? Qui ce li hanno raccontati direttamente da Slow Food: https://avamposto42.esa.int/blog/dei-legumi-davvero-fuori-da-questo-mondo/

Per saperne invece di più su Argotec: https://www.argotec.it/argotec/

Nell’immagine di copertina la zuppa di legumi creata dallo chef Stefano Polato. Credits: Argotec – Ready to Lunch .

Fai il pieno giusto | Proteine e muscoli

05/02/2015

Le piante a supporto dell’Uomo nello Spazio e l’iniziativa IBIS

L’esplorazione umana dello spazio profondo e la colonizzazione di altri corpi celesti, come la Luna e Marte, richiederà l’utilizzo di una nuova generazione di moduli spaziali capaci di sostenere per lunghi periodi la vita degli astronauti senza fare ricorso ai rifornimenti da Terra.

I sistemi di supporto alla vita tradizionali sono basati su processi chimico-fisici che garantiscono il controllo dell’atmosfera e dell’aria respirabile, il riciclo dell’acqua, lo smaltimento dei rifiuti. Questi sistemi richiedono per il loro mantenimento un costante apporto di risorse dall’esterno.

Ma se si volesse creare un sistema chiuso completamente auto-rigenerante, cioè in cui le risorse si riciclano in continuazione senza esaurirsi? I sistemi biorigenerativi per il supporto alla vita vogliono rispondere a questa esigenza.

Si tratta di sistemi complessi basati su elementi biologici, come le piante, le alghe e i microorganismi, in grado di generare e mantenere all’interno di un ambiente chiuso un’atmosfera respirabile, di purificare e riciclare l’acqua e l’umidità, di fornire cibo agli astronauti, come ad esempio ortaggi e pomodori, smaltendo al contempo gli scarti, sia vegetali che umani, in un ciclo continuo. In altre parole, l’idea è di ricreare all’interno dei moduli spaziali una biosfera artificiale in grado di mantenere la vita, proprio come la biosfera naturale sulla superficie della Terra.

Un altro vantaggio certo delle piante nello Spazio è che esse avrebbero un ruolo positivo non soltanto sul sostentamento, ma anche sul benessere psicologico degli astronauti. Pionieri su altri mondi e agricoltori spaziali, dunque!

Tuttavia, la coltivazione di piante in ambienti chiusi e in condizioni di gravità diverse da quelle della Terra è estremamente complessa e sono in atto ricerche sia nel campo della biologia sia in quello della tecnologia per far fronte alle numerose domande che questa sfida pone agli scienziati e agli ingegneri.

In campo biologico attualmente gli studi si concentrano sulla scelta delle specie di piante più adatte a essere coltivate in condizioni estreme, come lo sono le condizioni nello Spazio. In altre parole, si cerca di individuare le specie più resistenti alle radiazioni e meno sensibili alle condizioni diverse di gravità e di luce. In campo tecnologico, invece, gli studi si concentrano sulla definizione delle condizioni ottimali di luce, di distribuzione dei nutrienti, di scelta del substrato più adatto per la crescita delle piante e per una produzione di cibo di qualità e sicura per la salute degli astronauti.

Un altro elemento essenziale dei sistemi biorigenerativi sono i microrganismi, come ad esempio i batteri o le alghe unicellulari, che vengono “coltivati” in sistemi detti bioreattori, ambienti compatti i cui parametri ambientali sono controllati finemente per ottimizzare la crescita dei minuscoli ospiti. Sfruttare la grande biodiversità dei microrganismi offre il vantaggio di combinare tra loro diverse funzioni, permettendo la “chiusura” del sistema biorigenerativo, cioè la creazione di catene di comparti in cui i prodotti di base o gli scarti di un modulo alimentano i processi di un altro modulo.

Un esempio di sistema ecologico chiuso è rappresentato dal funzionamento combinato di un bioreattore fotosintetico e di un bioreattore cosiddetto “nitrificante”. Nei bioreattori fotosintetici, micro-alghe o altri microorganismi commestibili, come il cianobatterio Arthrospira, producono ossigeno e cibo, utilizzando la luce come sorgente di energia e i nitrati, cioè composti dell’azoto, come substrato nutritivo. Non tutti sanno che Arthrospira, pur richiedendo per la propria crescita volumi molto ridotti, ha proprietà nutritive paragonabili a quelle del cibo fornito dalle piante.

Da dove ricavare i nitrati di cui Arthrospira ha bisogno per crescere? Ecco che entra in gioco il bioreattore nitrificante, in cui una specie diversa di batteri produce a partire dalle acque di scarto i nitrati di cui si nutrono le alghe fotosintetiche. Questo processo, chiamato nitrificazione, consente al contempo di purificare l’acqua rendendola nuovamente potabile e utilizzabile dall’equipaggio. A chiudere il ciclo, è l’ossigeno prodotto dalla fotosintesi delle alghe nel primo bioreattore ad alimentare il processo di nitrificazione nel secondo. Ecco allora come i due reattori combinati fra loro si alimentano a vicenda con i propri prodotti di scarto e al contempo generano risorse preziose, come cibo, acqua e ossigeno, per il sostentamento degli astronauti.

Il progetto MELiSSA (Micro-Ecological Life Support System Alternative), dell’Agenzia Spaziale Europea, si propone di sviluppare uno di questi sistemi. MELiSSA si basa su cicli di carbonio, azoto e acqua, in cui batteri, alghe e piante vengono usate per produrre risorse vitali e mantenere l’ambiente dentro un modulo chiuso abitabile e in condizioni di equilibrio. Il sistema è suddiviso in cinque compartimenti, in cui il cibo per gli astronauti, le sostanze nutritive per le piante, l’acqua e l’ossigeno vengono prodotti a partire dai rifiuti organici dell’uomo, dai prodotti di scarto delle piante, dall’anidride carbonica. Altri progetti, come EDEN ISS, finanziato dalla Commissione Europea, GreenMOSS dell’ESA, Lunar Greenhouse della NASA, si concentrano sullo sviluppo di tecnologie per l’agricoltura in ambiente Spaziale.

Il Logo del Gruppo di Lavoro IBIS.

Il Logo del Gruppo di Lavoro IBIS.

Il tema dei sistemi di controllo ambientale, o in altri termini di supporto alla vita, di tipo biorigenerativo, è presente nell’agenda del programma dell’Unione Europea per il finanziamento della ricerca (H2020) e nella Global Exploration Roadmap, il cammino della Esplorazione Spaziale tracciato dall’ISECG (International Space Exploration Coordination Group), il gruppo di studio internazionale per l’esplorazione umana dello Spazio, a cui partecipano tutte le maggiori agenzie del mondo.

E’ dunque evidente come le tecnologie biorigenerative costituiscano un area di ricerca di fondamentale importanza per lo sviluppo di moduli abitati a zero consumo di risorse per l’esplorazione e la colonizzazione del Sistema Solare. Ma quali sono le possibili applicazioni a terra? Sono molteplici. Basti pensare allo sviluppo di tecnologie per l’agricoltura in ambienti confinati ed estremi, come i deserti o i poli ghiacciati, o al possibile contributo alla soluzione di questioni vitali quali la sostenibilità ambientale, il risparmio delle risorse, l’efficienza energetica.

L’Agenzia Spaziale Italiana, forte delle competenze nazionali nel settore, ha avviato un programma di attività che ha lo scopo di stimolare e incoraggiare iniziative di ricerca, di sviluppo tecnologico e commerciali sul tema. E’ questo l’obiettivo del Gruppo di Lavoro nazionale sui sistemi biorigenerativi IBIS (Italian BIoregenerative Systems) che, coordinato dall’ASI, raccoglie il contributo delle migliori competenze scientifiche e industriali nazionali.

E visto che il tema della Missione Futura di Samantha è la nutrizione, il Gruppo di Lavoro IBIS, non poteva non dare il suo contributo. Quello che avete letto è il primo di una serie di articoli sui sistemi biorigenerativi e sulla coltivazione di cibo nello Spazio che saranno pubblicati su Avamposto 42 e che cercheranno di rispondere alle domande “Quale cibo?, “Come produrlo nello Spazio?”, “Con quali tecnologie?”, “Cosa si sta facendo sulla Terra?”; conducendoci alla scoperta di un affascinante tema di ricerca scientifica e tecnologica e di una sfida per il futuro.

Salvatore Pignataro, ASI, Direttore Missione Futura e Coordinatore GdL IBIS

Sara Piccirillo, ASI, Biologa dell’Unità Volo Umano

Francesca Ferranti, ASI, Biotecnologa dell’Unità Volo Umano

Per saperne di piú: https://www.asi.it

I sistemi biorigenerativi

04/02/2015

Proteine…spaziali!

Quando gli astronauti sulla Stazione Spaziale Internazionale non sono coinvolti in qualche tipo di esperimento legato al metabolismo, hanno una certa libertà nella scelta della loro dieta e dei cibi che preferiscono mangiare.

Durante le prime missioni, come la D-2 Shuttle o le EuroMIR94 e 95 (missioni Europee presso la stazione MIR), la scelta del “menu spaziale” era lasciata agli astronauti in base ai loro gusti e non alle raccomandazioni mediche e nutrizionali per un corretto apporto calorico.  È chiaro quindi che con questo metodo sia molto facile andare in contro a carenze o al contrario eccedenze per quanto riguarda alcuni nutrienti, come ad esempio le proteine.

Dai dati raccolti durante le missioni è possibile vedere ad esempio come durante la missione D-2 (missione Shuttle STS-55) l’apporto di proteine per gli astronauti fosse stato solamente il 56% della razione raccomandata per un individuo medio sulla Terra. Un’insufficiente presenza di proteine nella dieta può portare (sulla Terra ma specialmente in microgravità) a conseguenze sull’intero organismo umano, sulla sintesi proteica, il metabolismo e la sintesi degli amminoacidi.

Vivere in microgravità (anche per brevi periodi) espone il corpo degli astronauti ad una potenziale riduzione della massa e del volume muscolare, come anche della loro potenza; in modo particolare per quanto riguarda la muscolatura delle gambe. Questo perché il tessuto muscolare è appunto costituito quasi del tutto da proteine.

Oltre a questo le proteine sono responsabili di apportare energia al corpo; quindi in caso di carenza di energia sono le proteine dei muscoli ad essere chiamate in causa.

A questo punto è chiaro come le proteine siano uno dei fattori essenziali quando il corpo si trova ad avere bisogno di energia in quanto gli amminoacidi essenziali (dei quali le proteine sono fatte) non sono prodotti dal nostro organismo.

In casi estremi di decesso per malnutrizione una delle maggiori cause è proprio il completo sfruttamento della riserva energetica delle proteine.

Non bisogna però pensare che un eccesso di proteine sia allora più salutare per il nostro corpo. Un esagerato apporto proteico (in particolare quando si associano proteine animali e una dieta povera di potassio o non si assumono abbastanza porzioni di frutta e verdura) può avere gravi conseguenze sulla forza delle nostre ossa, indebolendole . È quindi importante mantenere una dieta equilibrata e varia, associando alle proteine animali anche frutta e verdura.

Martina Heer

Proteine e muscoli | Scienza a gravita' zero

30/01/2015

La carica dei 101

Quando me lo ha chiesto, qualche mese fa, non ci credevo. “Vai e intervistali”, ha detto la Capa. “Ma dici sul serio?”, le ho risposto. “Dovrei intervistare quei…” Ma lei aveva già distolto lo sguardo, annoiata. Andare e intervistare: ecco tutto quel che dovevo fare. L’ennesima intervista a un astronauta? A Samantha Cristoforetti? A un controllore di volo del Col CC? Forse a Stefano Polato o Filippo Ongaro? Macché.

No, la Capa mi aveva chiesto di intervistare proprio loro: quei minuscoli, presuntuosi, orribili moscerini della frutta. “Presto saranno le vere star spaziali,” ha detto mentre uscivo. Aveva ragione. Forse è per questo che è la Capa. Sono un cronista serio, do alla Capa quel che è della Capa e riporto la trascrizione integrale dell’intervista.

Houston, 2014.07.01

Allora, perché stai zitto e ci guardi con quell’aria scettica?

Intanto, cari moscerini della frutta, dovrebbe essere l’intervistatore a fare la prima domanda, non voi. Non credete?

Sì vabbe’: ma ci guardi con un’aria da pera cotta da un quarto d’ora. Avremmo anche qualcosa di meglio da fare, dato che viviamo solo un paio di settimane, non credi?

Con tutto il rispetto, mi sarei aspettato di dover intervistare qualcuno di un po’ più…

Un po’ più…

Un po’ più… con rispetto, eh! Un po’ più importante, più stimolante. Al limite, anche un po’ più di bell’aspetto, ecco. 

Ora, se la metti sulla bellezza… senti, partiamo con le domande, per cortesia, fra 5 minuti abbiamo la BBC, la CNN e Rainews che devono intervistarci. E speriamo che abbiano mandato qualcuno con un po’ più di sale in zucca.

Sentite… la prima domanda che ho preparato è questa. Non so se vi piacerà… dunque… vado eh?

Vai, vai, sbrigati.

Allora: voi siete solo moscerini, esserini mosci e piccini, come dice il nome, piuttosto insignificanti. Ronzate intorno alla frutta, vi appiccicate le larve, la rovinate. Di peggio conosco solo le zanzare. Ecco, mi chiedo allora: perché qualcuno dovrebbe volervi sulla Stazione Spaziale?

Come si parte male! Tanto per iniziare, abbiamo già partecipato a varie missioni sullo Shuttle della NASA e il nostro nome scientifico è Drosophila melanogaster. Tu come ti chiami?

Stefano Sandrelli…

Ecco, vedi da solo la differenza! Drosophila melanogaster: suona un po’ meglio, no? Un tantino più nobile, se vuoi. E se non fossi così ignorante, sapresti anche che da anni diamo buoni suggerimenti agli umani che ci studiano. In effetti, siamo moscerini molto noti, nella ricerca. Siamo un vero e proprio “organismo modello”.

E cosa significa “organismo modello”?

Significa che non facciamo storie per essere allevate, ci riproduciamo molto più dei conigli, il nostro DNA è ben noto da circa 20 anni, abbiamo solo 4 cromosomi  e, se non ti basta, il nostro codice genetico non è troppo lontano da quello dell’uomo, specialmente per quanto riguarda la trasmissione delle malattie. Circa il 77% per cento dei geni portatori di malattie nell’uomo ha un analogo nel nostro genoma: il morbo di Parkinson, l’Alzheimer e così via.

Quindi siete inutili: se conosciamo già quelle malattie nell’uomo, a che servite voi?

Senti amico, cerca di accendere il cervello, per favore. Gli scienziati conoscono le malattie genetiche dell’uomo, ma è difficile studiare il meccanismo di trasmissione genetica di una malattia, dato che campate 70-80 anni. Noi, invece, ci riproduciamo pazzamente: la nostra vita dura più o meno un paio delle vostre settimane e ogni nostra femmina depone circa 600 uova. Capito? Trasmettiamo il nostro genoma “in diretta”, di fronte ai vostri occhi, a un sacco di discendenti.

Dalla tua espressione mi sembra di capire che questo non ti dica molto, vero?

Ma quanti siete?

Partiamo in più di 100. È il meccanismo della trasmissione genetica che interessa gli scienziati, capito? E noi glielo mostriamo, generazione dopo generazione.

Ma perché sulla ISS?

Perché sulla ISS non c’è peso. E il peso potrebbe essere una componente del famoso meccanismo di trasmissione genetica. Gli scienziati hanno ideato un bellissimo esperimento!

Parlatemene… come funziona?

Il Fruit Lab System ha tre componenti: una piccola casettina in cui siamo lanciati. Una seconda casettina dove viviamo e che permette l’inserimento di nuovo cibo e, soprattutto, l’estrazione delle nostre larve. Senza contaminazioni, però!

E che ci fanno gli astronauti con le vostre larve? Le mangiano? Cibo fresco?

Ma da dove sei uscito, tu? Le larve vengono portate in un bel frigorifero, un MELFI, conservate e portate a terra per essere studiate. Infine, c’è una terza casettina, in cui possiamo svolazzare liberamente, sempre che l’assenza di peso non ci disturbi troppo. E qui gli scienziati hanno montato una telecamera per guardarci 24 ore su 24. Una specie di Grande Fratello per moscerini. Inoltre parte di noi vivono in microgravità e parte in una  casetta inserita in una centrifuga, che simula la gravità terrestre. Le larve che produciamo vengono congelate, riportate a terra e studiate.

Siete proprio convinti che potrebbe venire fuori qualche cosa di interessante anche per gli uomini?

Certo, questa è la speranza nostra e degli scienziati che stiamo cercando di aiutare. Sono quasi 100 anni che aiutiamo gli uomini a capire il proprio funzionamento!

Se proprio volete saperne di più, ecco il blog dell’esperimento:

https://www.nasa.gov/ames/research/space-biosciences/fruit-fly-lab-ffl-01-engineers-blog/#.VMDVsCzhino

E qui Samantha Cristoforetti ne ha parlato nel suo blog: https://avamposto42.esa.int/blog/diario-di-bordo/single/l53-astromoscerini-spaziali/

Nell’immagini di copertina: L’habitat per gli astromoscerini creato appositamente per gli studi in microgravità. Credits: NASA / Dominic Hart

Stefano Sandrelli

Niente Panico

23/01/2015

Il motto di ieri: niente panico!

Nella foto: Samantha Cristoforetti durante una simulazione di emergenza durante l’addestramento prima del lancio.


“Niente panico” è scritto a chiare lettere sulla Guida Galattica per Autostoppisti nella serie di Douglas Adams. “Niente panico” è stato, però, anche il motto ieri al Columbus Control Centre a Oberpfaffenhofen, in Germania, come anche al Centro di Controllo della Stazione Spaziale a Houston, Mosca e Tsukuba (Giappone).

Alle 9:44 italiane all’interno della ISS è scattato un allarme di emergenza, che poteva indicare la presenza di ammoniaca (proveniente dai circuiti di raffreddamento esterni) nell’ atmosfera della Stazione. Seguendo le procedure di emergenza, gli astronauti si sono immediatamente recati nel segmento russo della Stazione, dove non vi sono circuiti di raffreddamento ad ammoniaca e dove hanno potuto verificare dalle misure effettuate che non vi erano tracce di ammoniaca in aria.

Già da subito sono sorti dubbi sul fatto che si trattasse veramente di un inquinamento di ammoniaca nell’aria che respirano gli astronauti, ma per ragioni di sicurezza (la precauzione non è mai troppa quando ci trova nello Spazio) all’equipaggio è stato chiesto di restare nel segmento russo mentre la situazione veniva analizzata nel dettaglio.

In questo tipo di emergenza il circuito di raffreddamento esterno ad ammoniaca viene subito spento e la pressione viene ridotta per impedire ulteriori perdite di gas tossico nei moduli abitativi della Stazione Spaziale. Ieri il sistema di controllo termale B ad acqua è stato spento, rendendo non disponibile ben metà del sistema di raffreddamento della ISS.

Anche il laboratorio Columbus è stato spento dal suo centro di controllo (COL-CC) per ridurre la produzione di calore negli ambienti della Stazione.

Mentre gli astronauti attendevano l’ok per riaprire il portello che divide il segmento russo dal resto della Stazione, i Centri di Controllo erano impegnati a farsi una prima impressione di cosa era accaduto e cercare di adattare la configurazione della ISS per affrontare la situazione. Nel frattempo alcuni esperti sono stati chiamati per analizzare i dati relativi agli allarmi scattati; nel pomeriggio la situazione si è fortunatamente stabilizzata e si è potuto concludere che si fosse trattato di una serie di falsi segnali, generati a livello di computer.

Infine verso sera è stato possibile dare all’equipaggio l’ok per rientrare nella parte statunitense della ISS, indossando comunque le maschere anti-gas per sicurezza, mentre veniva analizzata l’atmosfera del modulo. Una volta confermata l’assenza di ammoniaca, alle 21:00 Samantha Cristoforetti e gli altri membri della Stazione hanno avuto il via libera per tornare a dormire nei loro letti.

Nonostante si sia trattato di un falso allarme, il sistema termale di controllo B rimane tuttora spento; non vogliamo agire con troppa fretta: la Stazione Spaziale è un sistema complesso ed è bene che recuperi la sua completa funzionalità in modo graduale. In effetti, l’emergenza si è trasformata in niente altro che un problema di organizzazione per noi, che ci siamo ritrovati a riaggiustare la schedule degli astronauti per recuperare il tempo perso!

In un certo senso, questa giornata di allarme è arrivata nel momento migliore: gli astronauti erano pronti a iniziare una serie di esperimenti con alcuni esemplari di moscerini della frutta (vivi) e altri esperimenti di biologia che sarebbero falliti se non seguiti in maniera continua (come sarebbe successo durante il tempo passato dall’equipaggio nel segmento russo).

Nonostante il Columbus sia stato spento gli esperimenti e l’hardware del Laboratorio sembrano essere in buono stato e aver superato bene l’emergenza. Se tutto procede secondo i piani probabilmente nella giornata di oggi Samantha Cristoforetti e Terry Virts saranno in grado di condurre la prima sessione per l’esperimento Airway Monitoring.

In conclusione: anche se ci fosse davvero stata una perdita di ammoniaca la situazione era sotto controllo sia sulla Stazione Spaziale sia ai Centri di Controllo. Questo ci ricorda però quanto essenziali siano le simulazioni alle emergenze e l’addestramento che astronauti e personale a Terra fanno più e più volte prima di una missione (Samantha Cristoforetti aveva partecipato ad una simulazione di emergenza proprio per un caso come questo un paio di settimane prima del lancio).

E ci ricorda quanto saggio sia il motto della nostra missione: Niente Panico!

Per l’ articolo originale (in tedesco): https://www.dlr.de/blogs/de/desktopdefault.aspx/tabid-9260/15960_read-791/

Thomas Uhlig, Columbus Flight Director

Niente Panico

15/01/2015

Space fashion: la tuta EMU

In attesa della collezione autunno-inverno di tute spaziali annunciata dalla NASA fin dall’aprile scorso (guardate la Z-2 Suit, disponibile in vari design), accontentiamoci di curiosare tra i capi di abbigliamento fra i quali un astronauta (senza o con apostrofo) può scegliere per una bella passeggiata spaziale.

Innanzi tutto la sicurezza: una tuta per le uscite extraveicolari deve essere in grado di: a) mantenere una pressione e una temperatura interne costanti; b) rifornire l’astronauta di ossigeno e rimuovere l’anidride carbonica; c) proteggere chi la indossa dalla radiazione solare, dai micrometeoriti e dai rifiuti spaziali (di piccole dimensioni); d) garantire all’astronauta una certa mobilità e d) permettergli di comunicare con l’esterno.

Al momento, diciamolo pure, il guardaroba è piuttosto sfornito. Ci sono solo due modelli che rispondono ai requisiti: la EMU (Extravehicular Activity Mobility) della NASA e la Orlan-MK, l’ultima versione della tuta spaziale russa. Hanno il loro fascino, ma non riempiono l’occhio, sebbene la loro massa si aggiri sui 150-180 kg. No, non è come infilarsi un giubbottino. Per non parlare delle scarpe…

Lasciamoci la Orlan per il prossimo post e guardiamo la EMU più da vicino. La tuta NASA, sviluppata per lo Shuttle e usata anche sulla Stazione Spaziale, ha due sottosistemi principali: uno dedicato al controllo del mantenimento delle condizioni ottimali per la vita dell’astronauta (lo LSS, Life Support System), l’altro costituito dalla tuta spaziale propriamente detta (lo SSA, Space Suit Assembly). All’interno della tuta, la pressione è circa 0,3 atmosfere e il gas è ossigeno puro.

Tessere una EMU non è un lavoretto da poco. Per esemplificare la sua complessità, ci limitiamo a descrivere la stratificazione di cui è composta, andando dall’esterno verso l’interno – e senza la pretesa di entrare nei dettagli. A partire dall’esterno, troviamo:

  • tre strati (materiali vari, fra i quali il Kevlar, il Gore-Tex e il Nomex), di cui uno a prova di acqua, uno fatto della stessa sostanza di cui sono costituiti i giubbotti antiproiettile e uno resistente al fuoco;
  • da 5 a 7 stati di Mylar alluminizzato (e un numero ancora maggiore di strati sulle braccia e le gambe), che isolano termicamente l’astronauta e che rendono la tuta simile a un thermos dall’aspetto umanoide; in questi strati risiede anche la capacità della tuta di resistere all’impatto con micrometeoriti;
  • uno strato in nylon antistrappo rivestito di neoprene (un tipo di gomma sintetica): questo tessuto, che ricorda quello delle tende da campeggio, permette di conservare la corretta forma della tuta spaziale;
  • due strati per creare e mantenere la giusta pressione sul corpo dell’astronauta (uno in Dacron e l’altro in tessuto di nylon oxford rivestito di uretano). Sono strati impermeabili, che impediscono all’ossigeno di fuoriuscire. Qui risiede anche lo strato per il raffreddamento a liquido, con tubature in neoprene.

Ne risulta una tuta piuttosto flessibile, che permette una relativa libertà di movimento (rispetto alla Orlan, non in assoluto!), ma che è piuttosto complicata da indossare e che richiede molta manutenzione: insomma, va “piegata” con cura. Si fa per dire: le tute spaziali non si piegano!

Oltre a una telecamera, una radio, antenne, dispensatori di bevande corroboranti, serbatoi di ossigeno e via dicendo, la EMU è provvista anche di un attrezzo che sono sicuro piacerà a tutti. Il nome è SAFER, che sta per Simplified Aid For EVA Rescue. Il senso è chiaro: si tratta di un dispositivo che permette a un membro dell’equipaggio di mettersi al sicuro. Ma che cosa è? È il sogno di tutti noi: una specie di propulsione indipendente, alimentata ad azoto compresso, che in caso di bisogno fornisce all’astronauta una spinta per farlo muovere velocemente nella direzione scelta. No, mi dispiace deludervi: non serve a volteggiare liberi nel cosmo, ma – nel caso in cui un astronauta perda il contatto con la ISS – a dargli una spintarella di pochi secondi e a farlo tornare sano e salvo a contatto con la navicella madre.

 Ultima curiosità molto fashion. È necessario tutto quel bianco? Il bianco, com’è noto, riflette in modo più efficiente la luce solare di qualsiasi altro colore. In attesa di realizzare tute spaziali a specchio, accontentiamoci di questo colore: almeno eviteremo di lessare gli astronauti.

Stefano Sandrelli

Per saperne di più:

https://www.nasa.gov/externalflash/ISSRG/pdfs/emu.pdf

Niente Panico

12/12/2014

EVA contro EVA

Avete visto Gravity, il film di Alfonso Cuarón, che si è aggiudicato 7 Oscar? Nelle scene iniziali, il comandante Matt Kowalsky (George Clooney) giocherella all’esterno della navicella spaziale, spingendosi con una sedia a propulsione intorno alla dottoressa Ryan Stone (Sandra Bullock) che sta invece svolgendo un lavoro di manutenzione. L’atmosfera è serena (la quiete prima della tempesta), ideale per una passeggiata.

La passeggiata nello spazio, diciamolo, è solo un enorme equivoco. Un eufemismo con un tocco di romanticismo. In termini che asciugano fin troppo l’immaginazione, è ormai da anni in uso la dizione “attività extraveicolari” (EVA, Extra Vehicular Activity), ad indicare quel complesso di attività che un astronauta svolge all’esterno della navicella spaziale.

Sembra semplice, ma all’inizio del volo umano nello spazio, quando si sfidavano a colpi di record, statunitensi e russi non si trovavano d’accordo neanche su questo. Secondo la definizione dell’ex Unione Sovietica, infatti, un cosmonauta si trova all’esterno del proprio veicolo fin dal momento in cui è separato dal resto della navicella da un portellone ben chiuso. L’analogo potrebbe essere quello di una pallina da golf dentro una buca: non si trova “sotto terra”, perché è immersa in atmosfera – anche se bisogna ammettere che si trova neppure sul prato. Per gli statunitensi, invece, un’EVA inizia quando l’astronauta ha almeno tirato su la testa dalla sua “buca”. Una sciocchezza? Non quando le superpotenze si combattevano anche a colpi di minuti nello spazio.

In ogni caso, è bene ribadirlo, né il 18 marzo 1965 (data della prima uscita nello spazio di Alexey Leonov) né adesso, si tratta di una passeggiata. Si tratta invece della più dura e faticosa delle attività che gli astronauti sono richiesti di fare sulla Stazione Spaziale: dalle 5 alle 7 ore all’esterno della Stazione Spaziale, indossando una tuta di circa 120 kg.

È vero che le condizioni sono di assenza di peso ma, per spostarsi, l’astronauta deve vincere un’inerzia enorme. La massa della tuta si oppone a ogni movimento: braccia, gambe, corpo, testa. Per immaginare questa incresciosa situazione potete fare diverse cose: per esempio seguire una lezione dimostrativa di acquagym. Oppure, se siete più pigri o pigre, potete limitarvi a pensare all’addestramento degli astronauti: ore di immersione completa in una piscina, con indosso una tuta protettiva, a lavorare su alcuni elementi a grandezza naturale della Stazione Spaziale.

Il punto è che la tuta indossata dagli astronauti impone sforzi che sono simili a quelli che si devono fare per muoversi quando siamo immersi nell’acqua. Immaginate di montare o smontare una bicicletta mentre siete in immersione, ancorati sul fondo e indossando dei guanti che permettono solo parzialmente la presa. L’eventuale invidia per la presunta “passeggiata spaziale” dell’astronauta inizierà a far posto, prima, a una sorta di solidarietà per lui o lei, e poi di sincera soddisfazione per non essere al suo posto.

E potersi sbracciare senza tanta fatica, noi terricoli, per salutare gli amici.

Stefano Sandrelli

Per saperne di più:

L-131: Di nuovo in piscina per l’addestramento alle passeggiate spaziali

https://www.astronautinews.it/2014/07/16/l-131-di-nuovo-in-piscina-per-laddestramento-alle-passeggiate-spaziali/

L-411: Ancorati al braccio robotico

https://www.astronautinews.it/2013/10/17/l-411-ancorati-al-braccio-robotico/

Nella foto:  Samantha Cristoforetti durante l’allenamento alle EVA al Neutral Buoyancy Facility al Centro Europeo di addestramento astronauti di Colonia (Germania) il 31 Agosto 2010.

Niente Panico

05/12/2014

I cereali integrali

I cereali fanno parte dell’alimentazione umana sin dall’antichità. Purtroppo, soprattutto nei Paesi Occidentali, nel corso degli ultimi anni si sono sempre più affermati quelli raffinati, come per esempio il riso brillato, che è bianco e traslucido perché trattato con talco o glucosio, ma anche i prodotti industriali da forno preparati con le farine che si derivano. Si tratta di una scelta dagli effetti negativi, che in alcuni casi può aver favorito l’insorgere dell’obesità, senza trascurare le malattie cardiovascolari e il diabete mellito non insulino-dipendente, cioè quello di tipo 2.

Che fare quindi, non consumare nessun cereale?

In realtà, quelli integrali fanno bene al nostro organismo e sono inoltre di gran lunga più gustosi e saporiti. Se si passa poi al cibo spaziale, oltre a essere piú buoni e sani, i cereali integrali si sono dimostrati particolarmente adatti al processo di termostabilizzazione

Per la produzione del bonus food di Samantha è stata proprio questa la sorpresa più gradita: poter lavorare con questi ingredienti ha permesso di ottenere più gusto e maggiore croccantezza grazie al fatto che il cereale integrale difficilmente scuoce…e fanno anche bene!

Di conseguenza, non è quindi un caso se i cereali integrali sono ampiamente presenti nel menu di Samantha Cristoforetti, la cui Missione Futura è appena iniziata. Lo chef Stefano Polato, responsabile dello Space Food Lab di Argotec ci spiega il motivo di questa importante scelta: La raffinazione e la macinazione del cereale comportano la perdita di numerosi nutrienti. Al contrario, quello integrale ne è particolarmente ricco ed è in grado di rilasciare energia in modo lento e costante. Si tratta di un aspetto fondamentale di cui abbiamo tenuto conto, visti i grandi carichi di lavoro a cui è sottoposto il Capitano dell’Aeronautica Militare.

Per quanto riguarda la preparazione a casa, Stefano Polato suggerisce di porre attenzione ai metodi di cottura: Prima di tutto, è spesso consigliabile fare un ammollo, la cui tempistica può variare dalle 6 alle 12 ore. Questo procedimento è consigliato per mais in chicchi, grano o frumento, avena, orzo e segale. Facendo questo si eliminano inoltre i sali dell’acido fitico, che è la principale forma di deposito di fosforo in molti tessuti vegetali, specialmente nella crusca e nei semi. Si tratta dei cosiddetti fitati, che sono considerati anti-nutrizionali perché rallentano l’assorbimento degli altri elementi nutritivi e dei minerali presenti nel cereale.

A questo punto – continua lo chef di Argotec – prima di iniziare la cottura è necessario sciacquare bene il cereale, anche se questo è stato in ammollo per molte ore, per poi metterlo con la giusta quantità di acqua in una pentola d’acciaio o antiaderente. Mettiamo la fiamma al minimo quando inizia l’ebollizione e portiamo a termine la cottura con il coperchio per il tempo indicato sulla confezione. Se avremo fatto le cose per bene, alla fine della preparazione dovrà rimanere pochissima acqua, che verrà comunque riassorbita del tutto lasciando a riposo il prodotto per circa cinque minuti.

Antonio Pilello, Argotec

Per saperne di più: https://www.argotec.it/argotec/

Fai il pieno giusto | Zuccheri e obesità

03/12/2014

La giornata di un astronauta

Dopo un breve sguardo alla telemetria sui miei monitor riesco a vedere subito indicazioni del fatto che il sistema elettrico relativo al Columbus si è attivato e sta utilizzando energia:

“COL-FLIGHT, STRATOS, le luci del Columbus sono ON!”.

La risposta non si fa attendere:  “Copy that, STRATOS, quindi l’equipaggio è sveglio!”

Gli astronauti sono pronti a partire!

Un normale giorno dell’equipaggio sulla ISS inizio con circa un’ora di post-risveglio. Gli astronauti possono fare colazione, prepararsi per la giornata e leggere il “Daily Summary”, una specie di giornale che creiamo noi insieme agli altri centri di controllo e che serve a dare all’equipaggio uno status generale della ISS, annotazioni per il piano della giornata, i turni del Centro di Controllo ma anche una sezione per domande e risposte e (perché no) qualche battuta e fumetto! Non suona molto diversa dalla preparazione di qualsiasi essere umano prima di andare al lavoro no?

La prima conversazione con i Centri di Controllo sparsi per il mondo è durante la “morning Daily Planning Conference” (amichevolmente chiamata mDPC): l’equipaggio e il personale a Terra si aggiornano sulle attività del  giorno, discutono eventuali cambiamenti nello schedule e le domande che possono sorgere.

La fine della mDPC è il segnale per gli astronauti che si inizia a lavorare: 6 ore e mezza della loro giornata sono infatti dedicate agli esperimenti da portare avanti, l’installazione di nuovi payload, riparazioni da effettuare e naturalmente…le “faccende di casa”!

Oltre a queste ore una viene dedicata per il pranzo e due ore e mezza sono di esercizio fisico obbligatorio: a loro disposizione ci sono una bicicletta per l’esercizio cardiovascolare, un tapis roulant e un dispositivo per l’allenamento resistivo dei muscoli.

15872989881_273b5c49bc_bUna volta conclusa la giornata lavorativa della ISS è ora di un altro meeting, la cosiddetta “evening Daily Planning Conference” (eDPC). È il tempo della “buonanotte”: le comunicazioni con i Centri di Controllo a Terra viene interrotta per permettere agli astronauti di godersi un po’di meritato riposo; vengono inoltre spente le telecamere interne alla Stazione. Solamente in caso di emergenza o urgenza il contatto viene ripristinato. Dopo un giro di chiamate con le varie stazioni di controllo l’equipaggio è ufficialmente off-duty: possono cenare, controllare i loro social media, guardare la televisione e alcuni film o passare il tempo rimanente nella tranquillità della Cupola.

Poi è ora di dormire: otto ore e mezza di sonno e sogni in microgravità!

Un’ultima cosa per chi di voi fosse interessato a qualche dettaglio in più: esiste uno strumento chiamato OSTPV (“Onboard Short Term Plan Viewer”): mostra agli astronauti e al team di controllo a Terra la timeline delle attivitá, la schedule della ISS ed è diviso in varie sezioni suddivise tra equipaggio e Centro di Controllo. Ogni attivitá è rappresentata da una barra e, molto spesso, puó dare del filo da torcere anche agli astronauti stessi!

[youtube s2gUOV3KK2k nolink]

Se foste interessati a darci un’occhiata potete farvi un’idea di come è fatto qui.

Alessandro Rovera

Niente Panico

29/11/2014

La dispensa della Stazione Spaziale Internazionale

Per capire che ore sono sulla Stazione Spaziale Internazionale certo non si può guardare fuori dalla finestra (sebbene quella in dotazione agli astronauti sia molto grande e abbia una vista fantastica) e vedere se è giorno o notte.

Noi abitanti della ISS, infatti, ogni ventiquattro ore vediamo in media quindici albe mentre la Stazione gira attorno al mondo!

Nonostante questo siamo ancora comunque abituati ad avere una giornata di ventiquattro ore, a dormire la “notte” e a mangiare tre pasti il giorno (più ovviamente qualche occasionale snack). Per questo motivo la nostra giornata, che segue il fuso orario di Greenwich, è regolata con gli stessi ritmi che avremmo sulla Terra. Solitamente gli impegni di ogni membro dell’equipaggio durante i giorni lavorativi non permettono di condividere insieme pranzi e cene; cosa che invece accade nei weekend dove la cena diventa un momento di condivisione per tutti noi.

Ma come si organizza il pranzo o la cena di un astronauta? Dove si prepara il cibo?

Le scorte di cibo sono conservate in varie borse in diversi luoghi della Stazione – molte sono nel PMM Leonardo, il modulo fornito dall’Agenzia Spaziale Italiana. Nel Nodo 1 (Harmony), c’è il cosiddetto cibo “in uso”: di che si tratta? E’ presto spiegato. Prendiamo per esempio la categoria “verdura e minestre”: a bordo ci sono diverse borse di verdura e minestre ancora sigillate. Quella aperta e in uso è nel Nodo 1 in una cassettina rigida. Quando cerco una minestra o una zuppa apro quella cassettina e vedo che cosa è in offerta: ho provato per esempio un’ottima zuppa di lenticchie e dei gustosi asparagi! Quando la cassettina è vuota, si va a recuperare la prossima borsa di verdure e minestre… ma non prima della data in cui siamo autorizzati ad aprirla! Questo per evitare che mangiamo le scorte del prossimo equipaggio: sarebbe davvero pessima etichetta spaziale.

Che cosa abbiamo oltre verdure e minestre? Senza andare a controllare, mi vengono in mente le categorie “ frutta e frutta secca”, “colazione”, “ contorni”, “carne e pesce”.

Alcuni cibi sono pronti per essere consumati: per esempio le tortillas o la frutta secca. Altre devono essere reidratati con acqua calda (per esempio la mia quiche di verdure di stamattina a colazione) o con dell’acqua a temperatura ambiente (per esempio i cereali con mirtilli di ieri mattina). Altre vivande vanno invece soltanto scaldate nello scaldavivande elettrico, che ha la forma di una valigetta. Per esempio i miei pomodori con melanzane di oggi a pranzo!

Quando arriva un veicolo, per qualche giorno c’e’ anche del cibo fresco. Per esempio, con la nostra Soyuz sono arrivati pomodori, arance e mele. Inoltre, ogni astronauta ha il proprio “ bonus food”, nove borse di cui possiamo specificare il contenuto! Del mio bonus food parleremo parecchio qui si Avamposto 42!

Che utensili utilizziamo per mangiare? Gli strumenti principe sono le forbici, per aprire le buste, e il cucchiaio lungo: questo per riuscire a recuperare il cibo fino in fondo alle buste. Un piccolo set di forbice, cucchiaio e forchetta vola con noi sulla Soyuz ed è poi trasferito sulla Stazione: e uno dei primi consigli di Butch all’arrivo è stato “Attenti a non perdere il vostro cucchiaio!”

Samantha Cristoforetti

La foto di copertina è stata scattata durante la nostra cena per il giorno del Ringraziamento ieri sera. Altre foto qui.

Fai il pieno giusto | Metabolismo ed energia

28/11/2014