Archivio

L-122: Usare il trapano, saldare e riparare i connettori elettrici

Johnson Space Center (Houston, USA), 25 luglio 2014—Questa è stata una di quelle settimane nell’addestramento degli astronauti in cui mi sono sentita come una bambina in un campeggio estivo. Ho avuto l’opportunità di passare tre giorni interi all’aeroporto Ellington Air Field, dove è dislocata la flotta di T-38 della NASA, addestrandomi ai compiti di manutenzione di base con gli incredibili meccanici che riparano quei jet e si accertano che sia sicuro volarci. Una grande opportunità di ripassare alcune abilità e imparare molti nuovi trucchi. Incidentalmente, mi sono divertita un sacco!

C’è qualcosa di divertente e gratificante nel lavoro meccanico: immagino che sia una combinazione di abilità manuale, conoscenza degli attrezzi e dei materiali e il piacere umano di base che deriva dal costruire qualcosa o ripararlo.

A ogni modo, naturalmente non ero lì per il mio divertimento. Facciamo molto lavoro di manutenzione sulla Stazione Spaziale. È un veicolo estremamente complesso e l’equipaggiamento richiede una manutenzione preventiva periodica e, occasionalmente, una manutenzione correttiva per riparare un guasto. Il flusso di addestramento sulla ISS comprende un certo numero di corsi di manutenzione, in cui acquisiamo familiarità con gli attrezzi che abbiamo a bordo, il modo in cui sono scritte le procedure di manutenzione, cosa i controllori a terra si aspettano in termini di comunicazione e interazioni, e alcune attività di manutenzione tipiche.

Questo Field Maintenance Training [addestramento alla manutenzione sul campo—N.d.T.] è un’aggiunta piuttosto recente ed è intesa come un’esperienza immersiva, in cui fate molta pratica manuale e… beh, imparate dai migliori. È in realtà un corso di due settimane, ma sfortunatamente non ci sarebbe alcun modo di trovare due settimane nella mia agenda in questo periodo, a quattro mesi dal lancio. Ma visto che ero desiderosa di farlo, che il corso è molto flessibile, e che ho dei pianificatori stellari, ho potuto partecipare per tre giorni interi.

Il primo giorno sono stata nelle officine di avionica facendo pratica con le abilità di saldatura, utilizzo del tester e lavoro sui connettori elettrici, come per esempio la rimozione e l’installazione dei piedini. Ho diviso il resto del tempo fra le officine delle batterie e delle lamiere, facendo pratica con cose come usare il trapano, martellare, rivettare, piegare il metallo, rimuovere bulloni con la testa spezzata. Quest’ultima cosa, mi auguro veramente che non accada sulla ISS: cercare di trapanare attraverso un bullone d’acciaio non è divertente nemmeno a terra, e deve essere molto impegnativo in assenza di peso!

L’ultima volta che ho fatto qualcosa di simile, avevo 19 anni e stavo seguendo uno stage di 6 settimane sulla lavorazione dei metalli in un’officina per l’apprendistato meccanico a Monaco, un requisito per iniziare i miei studi di ingegneria… non avrei mai pensato che, 18 anni dopo, avrei fatto pratica da astronauta nel filettare con gli appositi attrezzi, e forse farlo sulla Stazione Spaziale. Non è straordinario?

Foto: sto cercando di fare una foto di un dettaglio difficilmente accessibile e male illuminato. I controllori a terra sono il secondo paio di occhi per i nostri compiti di manutenzione della ISS… ma visto che non possiamo portarli lassù, è veramente importante essere in grado di documentare fotograficamente il nostro lavoro.

Potete trovare altre foto qui.

Nota originale in inglese, traduzione italiana a cura di Paolo Amoroso—AstronautiNEWS. Per saperne di più’: https://www.astronautinews.it/

25/07/2014

L-128: Piante, geni e spazio… scienza interessante!

Houston (USA), 19 luglio 2014—Riguardando le foto della settimana scorsa, ne ho trovate un paio di una breve attività di addestramento all’esperimento APEX-03, e ho pensato di condividere qualche parola nella nota del diario di oggi.

Questo esperimento sulle piante utilizza, come soggetto, l’Arabidopsis Thaliana [nota anche come arabetta comune—N.d.T.], una classica pianta modello per la ricerca. Visto che sappiamo molto sulla biologia molecolare dell’Arabidopsis, è il candidato perfetto per osservare quali cambiamenti vengono indotti dall’ambiente del volo spaziale. Infatti, è stato evidenziato che l’espressione dei geni cambia in risposta all’assenza di peso, portando a modifiche alla struttura delle radici, alla crescita e al rimodellamento della parete cellulare nello spazio.

Per APEX-03, delle piantine di Arabidopsis verranno fatte volare nello spazio in delle capsule di Petri, avvolte in un panno scuro per evitare l’esposizione alla luce prima che inizi l’esperimento. Le capsule saranno quindi inserite nell’apparecchiatura Veggie per la crescita—e qui c’è qualche informazioni sulla Veggie.

Campioni diversi verranno fatti crescere per differenti numeri di giorni, prima che i membri dell’equipaggio documentino fotograficamente lo stato finale ed eseguano le operazioni di raccolta e fissaggio. Non è un compito difficile, ma richiede una certa attenzione: le radici sono molto delicate e non volete davvero danneggiarle quando le prendete con il forcipe dal loro substrato nutritivo gelatinoso per inserirle nella provetta di fissaggio (che potete vedere nella foto). Una volta al sicuro all’interno, montate un attuatore e iniziate a ruotare una maniglia per muovere un pistone all’interno della provetta. Questo riempie la camera contenente i campioni di pianta con un conservante chimico che congela lo stato molecolare della pianta.

Le provette vengono poi conservate nel freezer MELFI fino a quando possono essere riportate sulla Terra per l’analisi post-volo.

Nota originale in inglese, traduzione italiana a cura di Paolo Amoroso—AstronautiNEWS.

Per saperne di più su AstronautiNEWS: https://www.astronautinews.it/

20/07/2014

L-129: Nella camera ipobarica: l’esperimento Airway Monitoring

Johnson Space Center (Houston, USA), 18 luglio 2014—Ieri ho avuto la mia seconda sessione di BDC (raccolta di dati di riferimento) per l’esperimento ESA Airway Monitoring [monitoraggio delle vie aeree—N.d.T.]. Potete trovare qualche informazione sulle basi scientifiche in questa vecchia nota del diario dall’EAC, dove ho seguito il mio corso introduttivo.

Perché abbiamo bisogno di raccogliere dati pre-volo a terra? Beh, se volete capire gli effetti dell’assenza di peso su un fenomeno, dovete prima osservarlo in condizioni normali a 1G. Poi sarete in grado di confrontare quei dati con i dati che raccogliete nello spazio, e stabilire quali cambiamenti vengano indotti dalla microgravità.

Nel caso di Airway Monitoring, come potreste ricordare, siamo interessati a studiare lo scambio gassoso nei polmoni in due condizioni: pressione normale e pressione ridotta (10 psi, che è circa 2/3 della pressione atmosferica normale). Nello spazio faremo la misura a pressione ridotta nell’airlock, che depressurizzeremo di conseguenza… ma come facciamo a terra?

Questo è ciò che rende la BDC di Airway Monitoring interessante: facciamo la BDC in una camera ipobarica, una struttura che viene usata tipicamente per l’addestramento all’ipossia che i piloti, i paracadutisti… gli astronauti seguono periodicamente. Nella camera potete ridurre progressivamente la pressione simulando il volo ad altitudini maggiori. I 10 psi a cui si punta sono grossomodo equivalenti a un’altitudine di 10.000 piedi [circa 3000 m—N.d.T.].

Il primo tipo di misura è piuttosto semplice: devo espirare in un analizzatore che misurerà il contenuto di ossido di azoto (NO) della mia espirazione. NO è un marcatore dell’infiammazione aerea, ma visto che potrebbe esserci un po’ di NO nell’aria che respiro, devo anche inspirare attraverso un purificatore che lo rimuove. Ora siamo sicuri che qualsiasi NO misurato nella mia espirazione venga realmente dai miei polmoni!

Il secondo tipo di misura è un po’ più complicato ed è necessario per capire il ricambio dell’NO nel polmone: quanto NO viene realmente diffuso nel mio sangue, invece che espirato? Quì è dove abbiamo bisogno dell’attrezzatura Portable PFS [attrezzatura portatile PFS—N.d.T.]: inspiro da una sacca contenente una miscela di gas nota (comprendente NO e un gas inerte di tracciamento) e, quando espiro, la porzione centrale del mio respiro espirato viene raccolta in un’altra sacca e analizzata.

Questo esperimento è interessante sia dal punto di vista della scienza fondamentale, sia per le applicazioni nello spazio e a terra. In termini di conoscenza, migliorerà la nostra comprensione di come operino i polmoni e la funzione respiratoria. Questo ci aiuterà a diagnosticare e curare le malattie del polmone: pensate per esempio che oltre 300 milioni di persone in tutto il mondo soffrono di asma, e in alcune regioni del mondo la patologia non viene spesso diagnosticata.

Per l’esplorazione dello spazio, è veramente importante capire cosa accade ai polmoni degli astronauti durante il volo spaziale di lunga durata. Siamo portati a inalare molte piccole particelle che fluttuano nell’aria in microgravità, mentre sulla Terra cadono al suolo—pensate solo a quanto rapidamente la polvere può accumularsi nella vostra casa (o almeno lo fa nella mia!)

Nota originale in inglese, traduzione italiana a cura di Paolo Amoroso—AstronautiNEWS.

Per saperne di piú su AstronautiNEWS: https://www.astronautinews.it/

18/07/2014

L-130: Un giorno di saluti dolci-amari e… cuscinetti assorbenti

Johnson Space Center (Houston, USA), 17 luglio 2014 — Ieri è stato il giorno dei saluti… saluti molto speciali. Quanto spesso accade che possiate dire “ci vediamo nello spazio fra qualche mese?”… Prima Terry e io abbiamo detto arrivederci a Butch dopo un’ultima lezione di robotica insieme… la prossima volta che lo vedremo sarà a novembre in MRM 1, il modulo della Stazione Spaziale a cui attraccheremo con la nostra Soyuz. Più tardi nel pomeriggio Sasha ed Elena sono venuti a salutarci, scherzando che li vedremo al “controllo doganale” prima che ci sia permesso di entrare nella Stazione. Queste persone sono state parte del mio mondo per anni—ogni volta che mi trovavo a Houston o in Russia o in Europa o in Giappone, a seconda di cosa prevedevano i nostri rispettivi impegni, uno o più di loro poteva essere “in città” nello stesso momento. Beh, non saremo più insieme in città prima di ricongiungerci nello spazio. Butch, Elena e Sasha partiranno a settembre, quindi mi aspettavo che questo momento arrivasse presto. Ma abbastanza sorprendentemente, sembra che io abbia detto il mio arrivederci anche a Scott, che vedrò ancora sulla Stazione quando si unirà a noi il prossimo marzo. Se abbiamo ricordato le nostre agende correttamente, per i prossimi quattro mesi ci mancheremo l’un l’altra intorno al pianeta, arrivando “in città” quando l’altro è appena partito. Oltre a dare abbracci dolci-amari, ieri ho avuto una giornata di addestramento piena con molte attività brevi che sono andate dalle apparecchiature radioamatoriali alla robotica, dall’acquisizione di immagini della retina alla diagnostica dei problemi di rete LAN. Un’attività molto “diversa” che ho avuto è stata l’addestramento alla sensibilità dell’HAP. L’HAP è il cuscinetto assorbente che ora inseriamo nel casco di una tuta da passeggiata spaziale per aiutare a ridurre il rischio di una situazione di perdita d’acqua, come quella che è capitata a Luca l’anno scorso. Proprio come abbiamo controlli dei guanti previsti nelle timeline delle nostre EVA per verificare periodicamente che non ci siano danni, ora abbiamo controlli periodici dell’HAP, quando ai membri dell’equipaggio viene chiesto di “sentire” l’HAP dietro la loro testa e riferire eventuali variazioni. Per farsi un’idea di quale sensazione darebbe l’HAP intriso di diverse quantità d’acqua, ora abbiamo questo addestramento alla sensibilità dell’HAP. Abbiamo aggiunto progressivamente più acqua fino a quando, intorno a circa 150-200ml, mi sono sentita fiduciosa che sarei stata in grado di sentire la presenza di fluido nell’HAP. Poi siamo passati alla massima quantità—circa 600ml, ed è quello che vedete nella foto. L’HAP si ispessisce significativamente a quel punto e spinge realmente la vostra testa in avanti verso la parte anteriore del casco. Naturalmente, non lo lasceremmo arrivare così avanti. Ora abbiamo procedure previste per fermare l’accumulazione di acqua nel casco! Nota originale in inglese, traduzione italiana a cura di Paolo Amoroso—AstronautiNEWS. Per saperne di più su AstroanutiNEWS: https://www.astronautinews.it/  

17/07/2014

L-131: Di nuovo in piscina per l’addestramento alle passeggiate spaziali

Johnson Space Center (Houston, USA), 16 luglio 2014—Scusate per la lunga interruzione nel diario, ma è stata una settimana di addestramento davvero intensa qui al Johnson Space Center!

Nell’ultima nota del diario vi ho parlato dell’imminente sessione nella camera a vuoto, così, prima di tutto, se vi state chiedendo come è andata… beh, ieri abbiamo dovuto interrompere la sessione a pressione da alta quota a causa di un problema tecnico, quindi l’attività dovrà essere riprogrammata. Presto vi dirò di più!

Ma oggi lasciatemi raccontarvi la giornata di addestramento di venerdì scorso al Neutral Buoyancy Laboratory [laboratorio di galleggiamento neutro—N.d.T.], la piscina gigante in cui facciamo pratica sott’acqua con le passeggiate spaziali. Con il veterano delle passeggiate spaziali Randy Bresnick ho provato una LEE R&R. LEE è il Latching End Effector [attuatore di aggancio all’estremità—N.d.T.], il componente all’estremità del braccio robotico che cattura un perno di presa, per esempio su un veicolo cargo, e stabilisce una connessione rigida con esso. Per qualche foto vedete questa vecchia nota del diario.

R&R sta per Remove and Replace [rimozione e sostituzione—N.d.T.]: rimuovere un’unità guasta, installare un ricambio. Così, l’obiettivo di venerdì scorso è stato fare pratica nel rimuovere un LEE guasto dal braccio robotico e sostituirlo con il POA—si tratta di un attuatore all’estremità che è identico a quelli alle estremità del braccio, ma è invece situato sul Mobile Transporter [trasportatore mobile—N.d.T.] e viene usato per stivare temporaneamente grandi attrezzature, se hanno un perno di presa.

Ci sono alcune situazioni in cui questo scambio avrebbe senso, perché un attuatore all’estremità potrebbe essere usurato in modo tale da non poter catturare affidabilmente un veicolo in visita, ma potrebbe ancora lavorare bene come un POA per lo stivaggio temporaneo.

Foto: la rimozione di uno dei sei bulloni che collegano il POA (o piuttosto il mockup del NBL) al suo punto di installazione sul Mobile Transporter. (Credit: NASA)

Nota originale in inglese, traduzione italiana a cura di Paolo Amoroso—AstronautiNEWS

Per saperne di più su AstronautiNEWS:

16/07/2014

L-138: Prepararsi alla camera a vuoto

Johnson Space Center (Houston, USA), 9 luglio 2014—Ieri un’altra giornata impegnativa nei panni di una scienziata, addestrandomi a diversi esperimenti di scienze della vita fra cui uno in cui lavoreremo con delle piccole piante. Un’ultima lezione nel tardo pomeriggio è stata dedicata alla preparazione della mia sessione nella camera a vuoto della prossima settimana, lavorando con una tuta per EVA e dei guanti di Classe 1. Classe 1 è la designazione dell’equipaggiamento progettato per l’utilizzo nello spazio (invece che per l’addestramento). I guanti, in particolare, saranno quelli primari e di riserva fatti su misura per me: se nella camera non troveremo alcun problema con quelli, verranno imballati e mandati in Russia per volare con me nella Soyuz. Lunedì farò un giro a vuoto: seguiremo tutte le procedure pre-EVA nell’airlock, ma la depressurizzazione verrà simulata. Come nei corsi prep e post in passato, pressurizzeremo invece la tuta a 4,3 psi [0,29 atmosfere—N.d.T] rispetto alla pressione dell’ambiente. Ecco il racconto di una lezione prep e post. Martedì avremo la cosiddetta sessione in quota, in cui depressurizzeremo realmente la camera fin quasi al vuoto. Per questo, dobbiamo seguire le procedure di prebreath, eliminando l’azoto dal corpo per evitare la malattia da decompressione mentre la pressione viene abbassata. Il protocollo seguito nella camera è il protocollo di 4 ore in tuta, che è esattamente quello che sembra: respirare ossigeno puro nella tuta per 4 ore. Qui il suggerimento è portarsi uno o due film da guardare attraverso un piccolo finestrino nel portello della camera! Fra l’altro, questa sarà la mia prima volta nella camera a vuoto in tuta EMU della NASA, ma un po’ di tempo fa ho avuto l’occasione di fare una sessione nella camera in tuta russa Orlan. Ecco quella storia, se ve la siete persa! Foto: la sessione di Terry nella camera un paio di settimane fa. L’ho aiutato a indossare la tuta. (Credit: NASA)   Nota originale in inglese, traduzione italiana a cura di Paolo Amoroso—AstronautiNEWS. Per saperne di piú su AstronautiNEWS: https://www.astronautinews.it/  

09/07/2014

L-139: Micro-5: osservare una malattia infettiva nello spazio

Johnson Space Center (Houston, USA), 8 luglio 2014—Ieri Terry, Anton e io abbiamo passato la mattina in una simulazione di operazioni di routine di 5 ore, in cui abbiamo avuto l’opportunità di fare pratica con le attività giornaliere come i compiti di manutenzione, il trasferimento dell’urina, le operazioni cargo. In passato ho parlato di questi tipi di attività di addestramento, per esempio in questa nota del diario.

Nel pomeriggio sono stata addestrata all’esperimento Micro-5, che richiederà molte attività dell’equipaggio nella Microgravity Science Glovebox (MSG). [scatola a guanti per la scienza in microgravità—N.d.T.] Questa è un volume sigillato con guanti integrati in cui potete manipolare sostanze tossiche o campioni viventi senza timore di contaminare la Stazione. In realtà, come potete vedere nella foto, nella sua ultima versione non dovete usare gli ingombranti guanti di gomma, ma potete invece utilizzare i normali guanti da laboratorio: il sigillo si trova intorno al polso.

Lo scopo di Mirco-5 è studiare lo sviluppo di una malattia infettiva nello spazio. Sfortunatamente, è stato osservato che il volo spaziale induce sia un indebolimento del sistema immunitario delle creature viventi, sia un aumento della virulenza dei patogeni. Sebbene entrambi questi fenomeni siano stati studiati separatamente, Micro-5 li studierà entrambi osservando lo sviluppo della malattia nei minuscoli “vermi” (Caenorhabditis elegans) che saranno infettati con i batteri Salmonella in volo.

Addestrarsi a questo esperimento è stato molto divertente. Gestire tutte quelle colture viventi, mescolarle, separarle, prendersi cura della sterilità, prelevare attentamente dei campioni… tutto questo nel peculiare ambiente della MSG mi ha realmente fatta sentire come una scienziata. Naturalmente, ho eseguito la sequenza solo una volta. In volo, dovrò farlo dozzine di volte. Ma hey, come dicono… il progresso scientifico è per l’1% ispirazione e per il 99% sudore!

Nota originale in inglese, traduzione italiana a cura di Paolo Amoroso—AstronautiNEWS.

08/07/2014

L-140: Ecco cosa fareste con una perdita di ammoniaca sulla ISS

Johnson Space Center (Houston, USA), 7 luglio 2014—Nella nota del diario di ieri stavamo discutendo uno scenario di emergenza, in cui abbiamo ricevuto questa chiamata dal Controllo Missione Simulato “Fuga di ammoniaca, eseguire la risposta d’emergenza! Fuga di ammoniaca, eseguire la risposta d’emergenza!”.

Visto che l’ammoniaca è altamente tossica, la prima azione è indossare una maschera a ossigeno. Lungo tutta la ISS abbiamo almeno una maschera, spesso due, in ogni modulo, pronta per essere utilizzata. Le maschere del segmento USA hanno un piccolo serbatoio contenente una riserva di 7 minuti di ossigeno. Potrebbe non sembrare molto, ma queste maschere vengono usate solo per la risposta iniziale, come vedrete.

Con le maschere indossate, quelli di noi che erano nel segmento USOS (moduli USA più Columbus e JEM) si sono spostati rapidamente a poppa verso il segmento russo—non solo perché i nostri veicoli Soyuz sono agganciati lì, ma anche per una importante differenza di progettazione: non ci sono condutture dell’ammoniaca nel segmento russo.

Assicurandoci di sapere dove si trovano tutti e sei i membri dell’equipaggio, chiudiamo il portello del Nodo 1, isolandoci così dal segmento USOS e dalla fonte della perdita. A quel punto ci liberiamo dello strato esterno di indumenti, potenzialmente contaminati, e li lasciamo nel PMA, il piccolo elemento adattatore fra il segmento USOS e quello russo, chiudendo il portello di poppa del PMA mentre ci ritiriamo verso il modulo russo FGB.

È il momento di recuperare le nostre maschere con respiratore e montarci sopra le cartucce rosa con i filtri per l’ammoniaca. Il passaggio dalle maschere O2 ai respiratori per l’ammoniaca deve essere fatto molto velocemente e attentamente, visto che non sappiamo quale sia la concentrazione dell’ammoniaca nell’atmosfera del segmento russo. Presupponendo che l’atmosfera contaminata, teniamo gli occhi chiusi e tratteniamo il respiro mentre togliamo le maschere O2. Una volta indossati i respiratori, facciamo un certo numero di respiri di purificazione per liberarci dell’eventuale ammoniaca all’interno del cappuccio. Solo allora riapriamo gli occhi.

Dopo che ciascuno è passato in sicurezza al respiratore, è tempo di capire quanta ammoniaca abbiamo nell’atmosfera del segmento russo. Per quello disponiamo di un sistema di misura con chip dedicato. Nello scenario peggiore, il segmento russo è contaminato a un livello tale che dobbiamo evacuare la stazione. Se la concentrazione dell’ammoniaca non è così alta, possiamo filtrare l’aria attraverso le nostre cartucce respiratore attraverso la respirazione. Poi rimaniamo per diverse ore, fino a quando le misure mostrano un’atmosfera sicura. Nel caso fortunato in cui l’aria nel segmento russo non fosse stata contaminata, potremmo togliere le maschere e respirare normalmente. Sicura, di certo, ma con il segmento USOS perduto, almeno per il momento.

Foto: l’esecuzione della procedura di purificazione (ESA/S. Corvaja)

Nota originale in inglese, traduzione italiana a cura di Paolo Amoroso—AstronautiNEWS.

07/07/2014

L-142: Fuga di ammoniaca? Ecco da dove verrebbe…

Houston (USA), 5 luglio 2014—Come vi ho detto nell’ultima nota del diario, questo è tempo di simulazioni di emergenze per noi, con la simulazione per la Expedition 42 la settimana scorsa e quella per la Expedition 43 in arrivo la settimana prossima. L’obiettivo è fare pratica con le risposte alle emergenze con le nostre combinazioni di due equipaggi completi di 6 persone.

Più che un incendio e la depressurizzazione, lo scenario che richiede una risposta immediata senza scherzi è una perdita di ammoniaca in cabina. Se vi state chiedendo da dove quell’ammoniaca potrebbe venire, ecco un po’ di informazioni di base sulla progettazione della ISS. Tutto l’equipaggiamento che abbiamo a bordo genera molto calore, di cui dobbiamo liberarci in qualche modo. Ecco perché abbiamo condutture di raffreddamento che corrono lungo tutta la Stazione: attraverso delle piastre fredde e gli scambiatori di calore della cabina, l’acqua in quelle condutture raccoglie il calore. Nelle condutture abbiamo scambiatori di calore di interfaccia, in cui il calore viene trasferito dalle condutture di raffreddamento interne a quelle esterne. E in queste ultime, avete indovinato, abbiamo l’ammoniaca. Due pompe esterne si assicurano che quell’ammoniaca scorra dagli scambiatori di calore, dove raccoglie il carico di calore, ai grandi radiatori della Stazione, dove il calore viene respinto nello spazio.

Così, ora sapete che c’è un’interfaccia fra le condutture esterne dell’ammoniaca e le condutture interne dell’acqua. Cosa accade se c’è una rottura in quell’interfaccia, lo scambiatore di calore? Beh, visto che le condutture esterne sono a una pressione più alta, è probabile che l’ammoniaca fluirebbe nella cabina.

L’ammoniaca è estremamente tossica e ha un odore molto caratteristico. Tuttavia, se la perdita è abbastanza piccola, il sistema di auto rilevamento del veicolo o il controllo a terra potrebbero notarla per primi, osservando un aumento nella quantità di fluido negli accumulatori del sistema di raffreddamento: visto che non stiamo aggiungendo alcuna acqua, un aumento nella quantità deve venire dall’ammoniaca.

Ecco come è iniziato il nostro scenario la settimana scorsa, con una comunicazione da terra che ripeteva questa chiamata su tutte le frequenze: “Fuga di ammoniaca, eseguire la risposta d’emergenza! Fuga di ammoniaca, eseguire la risposta d’emergenza!”

Nella prossima nota del diario vi racconterò in cosa consiste quella risposta… ma ha molto a che fare con i due tipi di maschere che vedete nella foto (Foto: ESA/S. Corvaja).

Nota originale in inglese, traduzione italiana a cura di Paolo Amoroso—AstronautiNEWS.

05/07/2014

L-144: addestramento alle emergenze della Expedition 42

Johnson Space Center (Houston, USA), 3 luglio 2014—Ricordate che in diverse occasioni vi ho raccontato di simulazioni di emergenze, sia qui a Houston che in Russia? Vedete per esempio questa nota del diario.

Finora abbiamo sempre avuto solo simulazioni d’emergenza in tre persone con Terry e Anton, i miei compagni di equipaggio Soyuz. Come sapete, comunque, l’equipaggio della Stazione è composto da sei persone. L’equipaggio della Soyuz prima di noi sarà lì quando arriveremo a novembre e partirà a marzo. A quel punto diventeremo la Expedition 43. Dopo un paio di settimane, saremo raggiunti da un nuovo equipaggio Soyuz e torneremo a essere un complemento di sei persone.

Così, ieri abbiamo avuto l’opportunità di fare pratica di risposta alle emergenze con il nostro primo equipaggio da sei, la Expedition 42, unendoci a Butch, Elena e Sasha.

Che c’è di diverso quando sei persone lavorano alle procedure? Beh, in linea di principio è più facile, perché avete più membri dell’equipaggio che si occupano di passi diversi. Ma, come sempre con il lavoro di squadra, è essenziale avere una buona coordinazione e comunicazione, altrimenti finirete per peggiorare le cose e ostacolarvi a vicenda.

Ecco perché prima della simulazione il comandante della Expedition 42, Butch, ha preso un po’ di tempo per assicurarsi che capissimo tutti quali sarebbero stati i nostri ruoli durante le diverse risposte alle emergenze. Per esempio, in uno scenario di incendio, avrei assunto la responsabilità principale di lavorare al computer per cercare possibili siti di incendio basandomi sulle firme telemetriche, ed eseguire lo spegnimento dell’alimentazione elettrica come richiesto. Durante la risposta alla depressurizzazione avrei tenuto uno dei manometri portatili: lo controlliamo dopo ogni chiusura di portello e, se la perdita è nel nostro lato, ricalcoliamo il nostro tempo di riserva nel volume rimanente più piccolo.

Naturalmente, la risposta a un’emergenza è una situazione dinamica. Seguiamo un buon piano, ma ci adattiamo sempre anche in tempo reale come necessario. Questo va benissimo, finché c’è una chiara comunicazione quando affidate la responsabilità di un compito a qualcun altro.

Sono felice di poter dire che ieri il nostro equipaggio di sei persone ha lavorato insieme senza intoppi. Un segno molto buono per il nostro futuro periodo che passeremo insieme in orbita!

Foto: ESA/Corvaja. Con i nostri respiratori per l’ammoniaca dopo una perdita di ammoniaca.

Nota originale in inglese, traduzione italiana a cura di Paolo Amoroso—AstronautiNEWS.   

03/07/2014