→ Niente Panico

” La Guida galattica per autostoppisti è un libro decisamente notevole, forse il più notevole, sicuramente quello di maggiore successo, mai pubblicato dalle grandi case editrici dell’Orsa Minore. Più popolare del “Manuale di economia domestica celeste”, più venduto di “Altre 53 cose da fare a gravità zero”… per due importanti ragioni. Primo, costa un po’ meno; secondo, reca la scritta, DON’T PANIC, niente panico, in grandi e rassicuranti caratteri sulla copertina “.
In questa sezione, settimana dopo settimana, troverete fatti, curiosità, approfondimenti ai limiti della fantascienza legati alla principale sfida che l’uomo deve affrontare nello spazio. Una sfida per affrontare una mancanza, un vuoto: l’assenza di peso, appunto. Sfida che viene vinta con la tecnologia, con la pazienza, con l’allenamento, con il lavoro di team e anche con la giusta nutrizione.

L’avvicinamento e l’attracco

Il conto alla rovescia non inizia da 10, ma da 10800 secondi: ovvero tre ore prima del lancio vero e proprio. Tradizione russa.

Nei primi due minuti di volo, il veicolo è spinto verso l’alto da quattro propulsori (ognuno di circa 20 metri, tanto per dare un’idea delle dimensioni), che si sganceranno al termine del loro compito.

In meno di cinque minuti verranno bruciate 225 tonnellate di RP-1 e ossigeno liquido. L’RP-1 e un cherosene ad alta raffinazione simile al combustibile per aviogetti.

In poco meno di 10 minuti, la Soyuz si troverà a orbitare intorno al nostro pianeta a velocità  di 25 000 km/h, a circa 210 km di quota, 190 km “sotto” l’orbita della Stazione Spaziale. Il primo compito della navicella sarà di innalzare la proprio altezza: questa fase è un vero e proprio inseguimento orbitale, degno della migliore fantascienza classica: una navicella che corre alla volta di una Stazione Spaziale.

Nel corso di circa 4 orbite, la Soyuz si alza di quota automaticamente, mentre l’equipaggio verifica i sistemi di bordo con l’aiuto del centro di controllo russo.

Una volta che tutto sia a posto e che la Soyuz sia allineata con il portellone di attracco della Stazione Spaziale, a una distanza di circa 100 metri, il centro di controllo verifica l’allineamento. Poi inizia la fase finale di avvicinamento tra le due navicelle, che si muovono a una velocità relativa di pochi centimetri al secondo.

Il “rendezvous” è automatico, come pure l’attracco, ma l’equipaggio è addestrato per prendere il comando manuale della Soyuz, nel caso in cui qualcosa non funzionasse. Samantha ci ha raccontato tutto questo nel suo Diario di Bordo (Altri esami Soyuz passati dal nostro equipaggio!)

Dopo l’attracco, l’equipaggio esegue il bilanciamento della pressione dell’aria tra la Soyuz e l’avamposto in orbita. Dopo essersi tolti le tute di volo, gli astronauti aprono i boccaporti per entrare nella casa in orbita che li ospiterà nei sei mesi successivi.

Ecco le fasi classiche del lancio della Soyuz:

L – 6 min:            INIZIO SEQUENZA AUTOMATICA DI LANCIO

L – 2 min 40 s:   Separazione torre ombelicale terzo stadio

L – 1 min:           Separazione torre ombelicale primo stadio

L – 20 s:             Avvio sequenza di accensione dei motori

L – 15 s:             Separazione torre ombelicale secondo stadio

L – 5 s:               Massima spinta

L – 0 s:               DECOLLO

L + 1 min 58 s:  Separazione propulsori laterali – primo stadio

L + 4 min 47 s:  Separazione secondo stadio  e  accensione terzo stadio

L + 8 min 44  s: Spegnimento terzo stadio

L + 8 min 48 s:  Separazione della navicella Soyuz dal terzo stadio

Stefano Sandrelli

Dal diario di bordo di Samantha:

L-207: Altri esami Soyuz passati dal nostro equipaggio!

https://www.astronautinews.it/2014/05/01/l-207-altri-esami-soyuz-passati-dal-nostro-equipaggio/

Qui invece potete trovare due video che spiegano la sequenza di lancio e il successivo docking della Soyuz alla Stazione Spaziale Internazionale (il video è in inglese ma sono disponibili i sottotitoli in italiano):

https://www.youtube.com/watch?v=AVvgpKt5uCA&feature=youtu.be&hl=it https://www.youtube.com/watch?v=M2_NeFbFcSw&feature=youtu.be&hl=it

Niente Panico

23/11/2014

In comunicazione con la ISS dal Columbus Control Centre

Wow, che settimane per lo spazio europeo!

Prima l’arrivo di Alex Gerst  domenica notte, poi  l’atterraggio del lander Philae su una cometa – e presto con Samantha, un nuovo astronauta dell’ESA sulla ISS!

Un buon momento per aprire una nuova sezione di Niente Panico proprio mentre sta per iniziare la missione Futura: vi racconteremo aneddoti ed eventi direttamente dal Centro di Controllo Columbus (Col-CC) e cercheremo di spiegarvi il volo spaziale umano in tutti i suoi “aspetti operativi”.

sui monitor alcuni dati dal modulo Columbus (nella foto uno degli autori, sulla sinistra: Ciro Amodio)

sui monitor alcuni dati dal modulo Columbus (nella foto uno degli autori, sulla sinistra: Ciro Amodio)

Scriviamo al plurale perché questo “Noi” è fatto da quattro esperti del Col-CC della DLR a Oberpfaffenhofen (Germania): Ciro è un esperto sul sistema di gestione dei dati; Alessandro conosce perfettamente i sottosistemi del modulo Columbus; Mike è il nostro specialista per l’infrastruttura di Terra e Tom è direttore di volo – e sa quindi tutto (o meglio: niente …;-))

Il nostro lavoro è comunicare quasi quotidianamente con la Stazione Spaziale – ma come?

Mentre la maggior parte dei satelliti funziona comunicando direttamente con una o più stazioni di Terra – selezionate solamente nei momenti in cui sorvolano quelle determinate aree dove si trovano i centri che ricevono il loro segnale – la ISS è  sempre in contatto con il Centro di Controllo.

Il Tracking and Data Relay Satellites (TDRS) della NASA; il sistema di satelliti viene principalmente utilizzato per seguire l’intera orbita della Stazione Spaziale. Grazie ai satelliti del TDRS per rimanere in contatto con la ISS abbiamo bisogno solamente si sue stazioni sulla Terra – a White Sands e Guam Island – e i dati arrivano attraverso le basi di Houston o Huntsville.

Il Tracking and Data Relay Satellites (TDRS) della NASA; il sistema di satelliti viene principalmente utilizzato per seguire l’intera orbita della Stazione Spaziale. Grazie ai satelliti del TDRS per rimanere in contatto con la ISS abbiamo bisogno solamente si sue stazioni sulla Terra – a White Sands e Guam Island – e i dati arrivano attraverso le basi di Houston o Huntsville.

Ciò è reso possibile dal sistema satellitare TDRS che la NASA condivide, per esempio, con l’esercito americano: questi satelliti sono in orbita geostazionaria (ovvero se si guarda il satellite dalla Terra sembrano occupare in cielo sempre la stessa posizione) a  circa 36mila km dalla superficie terrestre e vengono usati come ripetitori per le comunicazioni e l’invio di dati per i veicoli spaziali, come la ISS e molte altre missioni. In questo modo la comunicazione con la Stazione Spaziale Internazionale risulta più veloce e soprattutto costante.

Allo stesso modo sul percorso inverso, i dati dalla ISS scendono alle stazioni di Terra. Con il termine “Dati” intendiamo tutti ciò che proviene dalla Stazione Stazione attraverso i sei canali video, i quattro canali audio “Spazio-Terra”, i  flussi di dati dagli esperimenti a bordo, i comandi per la ISS e tutti i dati relativi allo condizione degli equipaggiamenti di bordo – che noi (in gergo) chiamiamo telemetria – con cui monitoriamo l’ISS e tutti i suoi moduli.

Il tutto avviene via radio – ovviamente criptato – sulle bande di frequenza S e Ku. In caso di necessità teoricamente possiamo anche utilizzare l’email per comunicare con gli astronauti, che da lassù possono navigare in Internet o chiamare Terra attraverso un telefono “voice over IP”.

Non vediamo davvero l’ora di poter iniziare i nostri collegamenti con la Stazione e con Samantha!

Per saperne di più sul loro lavoro al Col-CC: https://www.dlr.de/blogs/en/desktopdefault.aspx/tabid-9260/15960_read-688/

Niente Panico

22/11/2014

Indossare una bolla d’aria

Una bolla d’aria: ecco come viene descritta dall’astronauta canadese Chris Hadfield la tuta Sokol, che Samantha e i suoi colleghi indosseranno nel corso del lancio della Soyuz che li porterà sulla Stazione Spaziale, nella notte fra domenica 23 e lunedì 24 novembre. Una bolla d’aria, e non perché sia leggera come il vento o morbida come un soffio d’aria sul viso, ma perché è la descrizione letterale del suo funzionamento. La Sokol è infatti una tuta che, in caso di emergenza, è in grado di sigillare l’astronauta al proprio interno, garantendogli le giuste condizioni ambientali, con un’aria pienamente respirabile.

Il mantenimento della bolla respirabile nella tuta è dovuto a uno strato interno di policaprolattame gommificato e uno strato esterno di tela di nylon bianco. La tenuta è garantita per circa 30 ore in un ambiente pressurizzato, mentre per un paio di ore in ambiente non pressurizzato. La tuta, inoltre, è provvista di cavi elettrici che alimentano un ventilatore, per eliminare o ridurre il sudore, e di cavi che riforniscono la tuta di ossigeno e di aria.

sam entering the sokolIndossarla è più semplice di quanto non accada con una tuta per le attività extraveicolari, ma non è certo come mettersi una t-shirt. La Sokol è un pezzo unico, guanti a parte, dalla testa agli scarponi. Ci si infila dentro come… avete mai visto il film di fantascienza (con varie punte di horror) che si intitola La cosa? Il regista era John Carpenter. Un alieno cattivissimo usciva improvvisamente da sotto lo sterno dei malcapitati umani che ne erano vittime. Per la Sokol è un po’ il viceversa. Ci si cala dentro la tuta – iniziando dai piedi – all’altezza dello sterno, infilandosi dentro a una specie di membrana che forma un budello. Quando la parte inferiore del corpo è a posto, allora si procede a infilare anche braccia e spalle infine la testa, inchinandosi e facendola poi riemergere nell’alloggiamento a cui è fissato il casco. I guanti vengono messi dopo.

Unici pregi, per quanto riguarda la vestizione: pesa appena 10 kg ed è tagliata su misura per ogni membro dell’equipaggio. Per curiosità: quella di Samantha è la Sokol numero 422, che contiene il numero 42 – quello della spedizione e quello della nota risposta alla domanda fondamentale della Guida galattica.

Una volta indossato questo bozzolo protettivo, la vera comodità arriva solo quando l’astronauta assume una posizione “alla Soyuz”. Ovvero seduto, con le ginocchia piegate verso la cassa toracica, in posizione di partenza. Come molti altri elementi spaziali russi, insomma, è un oggetto molto orientato al suo scopo, terribilmente efficiente ma che non lascia grandi spazi di manovra.

Una volta attraccati alla Stazione Spaziale, Samantha e i suoi colleghi lotteranno diversi minuti per togliersi questa tuta e si cambieranno d’abito prima dell’ingresso nella casa orbitale. Come conviene a chi festeggia l’arrivo in una nuova casa.

[youtube 2gaFXZWhp4k nolink]

Altre foto di Samantha con la Sokol qui.

Stefano Sandrelli

Niente Panico

21/11/2014

La Soyuz di Samantha, Anton e Terry

Tanto per evitare di fare confusione: Soyuz si chiama il lanciatore e Soyuz si chiama anche la navicella spaziale nella quale Samantha viaggia alla volta della Stazione Spaziale.

La prima delle due Soyuz, il lanciatore, com’è facile immaginare, è l’evoluzione pacifica di un missile balistico intercontinentale prodotto dall’Unione Sovietica in piena guerra fredda. Dalla seconda metà degli anni ’60 a oggi, sono stati eseguiti oltre 1700 lanci, il 90% dei quali senza equipaggio, con un’altissima percentuale di successo.  Come molti altri lanciatori, ha una struttura a tre stadi.

La seconda Soyuz, quella che emotivamente ci coinvolge di più, è la navicella TMA-15M, che ospita gli astronauti. Si tratta di una versione di ultima generazione ( TMA- M),  con un corredo digitale più moderno, un computer avanzato per il controllo del volo e dispositivi che permettono una migliore manovrabilità. E un po’ di spazio in più a disposizione dell’equipaggio. La navicella Soyuz è composta da tre moduli separabili: il modulo orbitale, di discesa e di servizio.

Durante l’ascesa verso la Stazione Spaziale, gli astronauti si sistemano nel modulo centrale orbitale, la cui scomodità è leggendaria: 5 m³ di volume interno, da dividere in tre per qualche ora. Stretti, certo, ma vuoi mettere la soddisfazione di poter contare anche su una finestrella, che permette di guardare un po’ fuori dall’abitacolo e che è stata aggiunta solo nelle versioni più’ recenti della navicella? Nel modulo orbitale ci sono invece anche una toilet e tutti i sistemi di guida. Il modulo ha due portelloni: uno che lo collega al modulo di discesa e uno laterale, che viene usato dagli astronauti per entrarvi nella fase di lancio.

Anche nel corso della discesa, invece, gli astronauti si sistemano nel modulo meridiano, che è dotato di uno scudo termico che gli permette di raggiungere terra senza che l’attraversamento dell’atmosfera lo incendi o faccia salire troppo la temperatura interna dell’abitacolo. Ha un volume abitabile ancora più piccolo, appena 3 m³. Ma del rientro parleremo più in dettaglio fra 6 mesi circa.

La navicella è completata dal modulo di servizio: serbatoi dell’ossigeno, propellente, propulsori per l’assetto, elettronica , sistemi di guida della navigazione. Questo modulo è controllato a distanza.

Stefano Sandrelli

Per saperne di piú, direttamente dal diario di bordo di Samantha Cristoforetti:

L-207: Altri esami Soyuz passati dal nostro equipaggio!

https://www.astronautinews.it/2014/05/01/l-207-altri-esami-soyuz-passati-dal-nostro-equipaggio/

L-18: Ripensando agli esami Soyuz della settimana scorsa

https://www.astronautinews.it/2014/11/05/l-18-ripensando-agli-esami-soyuz-settimana-scorsa/

E alcuni dettagli tecnici:

https://esamultimedia.esa.int/multimedia/publications/Futura_IT/ (da pagina 20)

Niente Panico

20/11/2014

Esperimenti in microgravità: i sounding rocket

Centrifughe, torri di caduta, voli parabolici: e ancora non siamo alla fine. Per completare la panoramica delle condizioni sperimentali a “gravità ridotta” senza andare in orbita, occorre aggiungere un ulteriore metodo.

Non si tratta di un’idea rivoluzionaria, come l’invenzione dell’antigravità di Archimede Pitagorico o di qualche altra meravigliosa idea fantascientifica. Occorre invece estremizzare un po’ un’idea che abbiamo già incontrato nei post precedenti.

Come abbiamo visto, se vogliamo realizzare un esperimento in condizioni di gravità ridotta, occorre che l’esperimento stesso cada da qualche altezza. Non pensate a lanci improvvisati dal finestrino di un dirigibile o da una mongolfiera: voliamo un po’ più in alto. Utilizziamo i cosiddetti sounding rocket, spesso tradotti in italiano come “razzi sonda.”

I sounding rocket sono parenti dei missili balistici. Furono inizialmente progettati per superare la velocità del suono in atmosfera e studiarne le caratteristiche fisiche.

Riadattati e utilizzati dall’ESA fin dal 1982 per esperimenti a gravità ridotta, i razzi sonda europei oggi raggiungono quote dai 250 km (configurazione MASER o TEXUS) ai 750 km (configurazione MAXUS) e sono in grado di trasportare esperimenti per una massa totale di diverse centinaia di kg. Come vedete, si tratta di un salto di ordini di grandezza rispetto alle Drop tower: il tempo di caduta passa da pochi secondi a una decina di minuti e si arriva a ridurre il peso a circa un decimillesimo di quello terrestre.

La caduta, come immaginate, è libera ma non sconsiderata: al termine della discesa, si aprono i paracadute che permettono l’atterraggio della capsula che contiene il carico scientifico a circa 30 km/h.

Vediamo da vicino la capsula che contiene gli esperimenti: la struttura esterna è un cilindro che misura complessivamente circa 3,3 – 3,5 metri di lunghezza, per un diametro di 43 cm (MASER o TEXUS) o 63 cm (MAXUS).

Al suo interno, vengono sistemati i singoli moduli sperimentali. Ciascun esperimento è montato su piattaforme di diametro di 40 cm (MASER o TEXUS) o 60 cm (MAXUS). Le piattaforme sono poi chiuse in contenitori cilindrici e fissati alla struttura della capsula con degli ammortizzatori elastici, per ridurre le vibrazioni in fase di lancio. Infine si aggiungono le batterie, l’elettronica necessaria e così via. E il “pacco sperimentale” è pronto. In questo modo gli esperimenti sono del tutto indipendenti, tanto che possono essere tranquillamente impilati uno sull’altro.

Una curiosità: durante la fase di lancio, a causa di vibrazioni interne e della spinta dei motori, gli esperimenti vengono esposti a condizioni di gravità aumentata. Di quanto? La spinta dei motori raggiunge e mantiene per circa 45 secondi un’accelerazione di 12 g. Dodici volte il peso. Inutile dire che non sono voli che prevedono la partecipazione di scienziati o tecnici a bordo….

Stefano Sandrelli

Per saperne di più sui sounding rockets: https://www.esa.int/Our_Activities/Human_Spaceflight/Human_Spaceflight_Research/Sounding_rockets

Niente Panico

19/11/2014

Parabole, coni e conati

Per sperimentare l’assenza di gravità, come abbiamo visto qualche post fa, non è necessario essere astronauti: basta essere genitori e portare i propri figli a un parco divertimenti, salire su una drop tower e… riuscire a sopravvivere! Dopo, per festeggiare, potrete persino prendere un cono gelato. Se lo stomaco è tornato al suo posto, s’intende.

Ma perché limitarsi a una drop tower quando, se siamo abbastanza fortunati, potremmo avere a disposizione addirittura una “cometa del vomito”? Il nome è promettente, no?

Da anni l’ESA – e non solo, naturalmente – organizza delle campagne di voli aerei molto particolari.  In che senso? Lo vediamo subito: siamo all’aeroporto di Bordeaux- Merignac, in Francia. Sulla pista di decollo vedete un Airbus 300 della compagnia Novospace. È lì per voi, vi sta aspettando. Salite a bordo. Come potete vedere, l’allestimento interno non è certo quello di un aereo. Tutto è stato modificato, a partire dai sedili, che sono stati rimossi. Al loro posto si è ricavato un ampio spazio.

Per darvi il benvenuto, nella fase di decollo dalla base de il pilota dirige l’aereo alla massima velocità con una pendenza di circa 45 gradi. Raggiunti i 20 km di quota, i motori vengono “messi al minimo”. E… indovinate. Che cosa succede a un aereo a 20 km di altezza, con i motori al minimo? Intuite la risposta? Già… precipita. Nel nostro caso, naturalmente, è una discesa controllata: con i motori così “silenziati”, l’aereo si trova a planare in caduta libera, frenato solo dall’attrito dell’atmosfera.

Nei 20 secondi di caduta, il peso – in analogia con quanto accade in una torre di caduta – viene annullato dalla forza apparente dovuta all’accelerazione dell’aereo. In altri termini: siamo quasi in assenza di peso. A causa dell’attrito dell’aria, il peso viene ridotto di circa 100 volte: galleggiate allegramente, come un astronauta, e con voi i vostri colleghi e gli esperimenti che hanno portato.

Dimenticavo: durante un volo parabolico, l’aereo percorre ben 31 parabole. Quindi preparatevi: alla fine di questa discesa ci sarà giusto il tempo di darsi una pettinata e l’aereo tornerà a risalire. Il totale del tempo passato in assenza di peso, parabola dopo parabola, è oltre 600 secondi.

L'Airbus A300 utilizzato per i  voli parabolici di addestramento.

L’Airbus A300 utilizzato per i voli parabolici di addestramento.

Ma non preoccupatevi troppo: non si sale su una “cometa del vomito” semplicemente comprando il biglietto per un parco giochi, come può capitare su una drop tower. Le campagne di voli parabolici “Fly your thesis” organizzata dall’ESA, per esempio, sono indirizzate soprattutto agli studenti universitari. Questo permette loro di avere un primo accesso allo spazio: circa 10 minuti di assenza di gravità, permette agli studenti di familiarizzare con i concetti base, con i problemi e con le tecnologie spaziali. Naturalmente la sfida principale consiste nell’ideare esperimenti che possano avere durate inferiori a 20 secondi circa. Esperimenti intelligenti, veloci da svolgere e facilmente ripetibili.

Per partecipare a una campagna di voli parabolici, in genere aperta anche a un numero ristretto di giornalisti, si deve superare una visita medica, ma non ci sono richieste fisiche particolarmente restrittive: per esempio non è richiesta una vista perfetta. È chiaro però che il fisico è sottoposto a movimenti innaturali, che possono disturbare chi soffre di malattie come il diabete o l’epilessia. Qualcuno non sta benissimo durante il volo – “comete del vomito” non è un soprannome immeritato – ma si tratta di malesseri passeggeri: i partecipanti hanno sempre tratto soprattutto un gran divertimento dallo sperimentare l’assenza di gravità. Per prevenire i malesseri ciascun gruppo può sperimentare 5 voli parabolici prima della campagna vera e propria, durante i quali si rimane legati ai propri sedili, in modo da dare una certa gradualità all’esperienza. In ogni caso è possibile prendere alcuni medicinali prima del volo.

E, ancor meglio, sarebbe utile allenarsi prima della campagna: per esempio… avete presente la torre di caduta? Pensavate davvero di sfuggirle?

PS In questo post, naturalmente, si scherza sulle drop tower dei parchi gioco. Si ricordi che, per la scienza, si utilizzano drop tower ben diverse – descritte nel post precedente.

 Stefano Sandrelli

Per saperne di più: https://www.esa.int/Our_Activities/Human_Spaceflight/Human_Spaceflight_Research/Parabolic_flights2

Niente Panico

07/11/2014

In caduta libera

Due ingenui genitori decidono di portare i propri figli a un parco divertimenti. Se lo ricordano carino e divertente. Trent’anni fa. Ora l’attrazione principale è una specie di pilone altissimo, circa 60 metri. Alla base, seduti su certi seggioloni di sicurezza, ci sono tante persone che urlano eccitate. I bambini insistono e anche loro si aggiungono al gruppo. Pronti alla partenza.

La vista dall'alto dell'interno della drop tower (torre di caduta)  Glenn's 5 second Zero Gravity Facility della NASA. Credits: Ben_pcc - Tone mapped image made by self - wikipedia

La vista dall’alto dell’interno della drop tower (torre di caduta) Glenn’s 5 second Zero Gravity Facility della NASA.
Credits: Ben_pcc – Tone mapped image made by self – wikipedia

Pronti per modo di dire perché, d’improvviso, vengono innalzati in pochi secondi a 30-40 metri lungo un binario sulla parte esterna della torre. È già abbastanza stordente, ma a questo punto il sospetto diventa una certezza anche per gli adulti più ingenui. E infatti, di lì a poco, fra urla assordanti, vengono fatti scivolare giù a velocità spaventosa, in caduta libera. La posizione del loro stomaco che galleggia li avverte dell’assenza di peso.

Durante la caduta libera, in effetti, i nostri corpi si trasformano in sistemi di riferimento non inerziali: i nostri organi sperimentano una forza uguale e contraria alla forza di gravità. Insomma: una torre di caduta in un parco di divertimenti è un ottimo metodo per assaggiare – almeno per qualche secondo e in via teorica – l’assenza di peso.

Le torri di caduta si usano anche per scopi scientifici.  All’interno della struttura a torre si pratica il vuoto atmosferico e si fanno cadere esperimenti all’interno di capsule protettive, registrando poi il comportamento del sistema sotto osservazione con una serie di dispositivi ottici, come telecamere o fotocamere. La Drop Tower di Brema, in Germania, con i suoi 146 metri di altezza è la più alta d’Europa e garantisce una caduta di 120 metri: circa 4,74 secondi di microgravità, che possono essere portati a circa 9,3 secondi grazie a un meccanismo a catapulta.

Un metodo alternativo è quello delle centrifughe ad altissima velocità: una centrifuga di grande diametro, circa 8 metri, è installata presso ESTEC, il centro dell’ESA per la ricerca e la Tecnologia Spaziale, in Olanda. In questo caso il peso viene annullato dalla rotazione, ma si introduce una forza centrifuga che permette di creare anche condizioni di gravità in eccesso, fino addirittura a venti volte la gravità terrestre.

E se volete proseguire con gli incubi in caduta libera, ci sono i voli parabolici. Ma di questi parleremo nel prossimo post.

Stefano Sandrelli

Niente Panico

04/11/2014

La scienza nell’armadio

Si dice spesso che sulla Stazione Spaziale Internazionale si fa ricerca. Ma che cosa significa? Di quale ricerche si parla? E in quali ambienti viene svolta?

Gran parte delle ricerche sfruttano la condizione di microgravità a bordo della Stazione Spaziale. L’assenza di peso, infatti, modifica molti fenomeni fisici e biologici, mettendo in evidenza meccanismi che sulla Terra sono nascosti o meno facilmente isolabili. Le ricerche si estendono a molti campi diversi fra loro: fisica dei fluidi, scienza dei materiali, fisica della radiazione ionizzante, biologia, fisiologia, medicina.

Il primo laboratorio nello spazio è il corpo stesso degli astronauti: da quando l’uomo è volato intorno alla Terra, le analisi si sono concentrate sulle sue reazioni e le modifiche a livello fisiologico. Oggi però ben quattro dei moduli in cui gli abitanti della Stazione Spaziale vivono e operano sono, a tutti gli effetti, veri e attrezzatissimi laboratori di ricerca: Destiny (Stati Uniti), Kibo (Giappone), Poisk (Russia) e Columbus (ESA).

Columbus, in particolare, è il “cuore” del contributo europeo al progetto della ISS: Il design del laboratorio europeo è semplicissimo ed è basato su quello degli MPLM che l’ASI (e l’industria italiana) ha costruito per la NASA: è un cilindro di 4,5 metri di diametro, lungo circa 7 metri. Come ogni altro luogo abitabile della Stazione è dotato di pannelli termici e anti-meteoriti; inoltre ha un sistema di controllo e mantenimento di un’atmosfera abitabile (pressione, temperatura e composizione).

Il laboratorio Columbus fu installato sulla Stazione Spaziale Internazionale durante la prima passeggiata spaziale della missione  STS-122 nel Febbraio 2008. Gli astronauti NASA Stanley Love and Rex Walheim hanno passatocirca otto ore al di fuori della ISS per preparare Columbus per il trasferimento dallo Shuttle Atlantis al nodo 2 Harmony della Stazione Spaziale.

Il laboratorio Columbus fu installato sulla Stazione Spaziale Internazionale durante la prima passeggiata spaziale della missione STS-122 nel Febbraio 2008. Gli astronauti NASA Stanley Love and Rex Walheim hanno passatocirca otto ore al di fuori della ISS per preparare Columbus per il trasferimento dallo Shuttle Atlantis al nodo 2 Harmony della Stazione Spaziale.

In totale, circa 75 metri cubi di spazio abitabile. Spazio abitabile? La prima volta si rimane perplessi: sulla Terra nessun agente immobiliare vi parla di metri cubi abitabili, ma di metri quadrati di superficie calpestabile. Ma siccome nello spazio i nostri astronauti non calpestano, ma svolazzano in 3D… ci siamo capiti. Torniamo al Columbus.

Il pezzo forte del modulo sono gli “armadi per gli esperimenti” (rack): 10 rack, ciascuno dei quali delle dimensioni di una cabina telefonica. Ne primi 5 anni di attività, hanno ospitato 110 esperimenti europei, con il coinvolgimento diretto (ovviamene da Terra) di circa 500 scienziati. Con risultati interessanti. Facciamo solo un esempio, legato al tema di avamposto 42.

Com’è noto, in orbita gli astronauti tendono a perdere massa ossea. Il meccanismo sembra intuitivo: in assenza degli stimoli indotti dal peso, il corpo produce meno cellule ossee che rimpiazzino quelle che via via muoiono. E, con il tempo, questo produce un indebolimento delle ossa.

Questo quadro, però, ha iniziato ad arricchirsi. Si è osservato che gli astronauti hanno la tendenza ad assorbire più sale, senza però che questo comporti una maggiore ritenzione idrica. Dato che questo è il contrario di quel che è ben noto fra noi terricoli, sono state predisposti studi specifici su culture cellulari. Grazie alla facilities del Columbus, gli esperimenti hanno mostrato come certi enzimi del nostro sistema immunitario, in assenza di peso, vivano una super attività. Senza entrare in dettagli, uno dei risultati suggerisce che alla perdita di massa ossea negli astronauti possa contribuire anche l’accumulo di sale. Da cui la necessità di diete in cui il gusto è stimolato dalle spezie.

Le attività all’interno del Columbus sono monitorate e organizzate dal Columbus Control Centre dell’ESA, in Germania

Molto altro, ma ne parleremo ancora.

Stefano Sandrelli

Per saperne di più: https://www.esa.int/ita/ESA_in_your_country/Italy/Missione_Columbus_Information_Kit_versione_italiana https://www.esa.int/ita/ESA_in_your_country/Italy/Il_laboratorio_dell_ESA https://www.esa.int/Our_Activities/Human_Spaceflight/Columbus/Five_years_of_unique_science_on_Columbus A questo link un video con gli esperimenti selezionati dall’Agenzia Spaziale Italiana per la missione Futura: https://www.asitv.it/media/vod/v/1615  

Niente Panico

24/10/2014

Le vostre altre 53 cose da fare a gravita’ zero

Ecco alcune delle 53 cose da fare a gravita’ zero che ci avete mandato; ogni settimana raccoglieremo i migliori suggerimenti… quindi cosa aspettate?

Scrivete alla redazione, postatelo su Facebook  Twitter usando l’hashtag #53ZeroG, mandatelo per posta ordinaria, fate segnali di fumo, sbracciatevi, datevi da fare: scriviamo insieme questo “libro” di enorme successo. Non lasciamolo tutto agli autori di Avamposto 42, che scrivono peggio dei Vogon (e se non sapete come scrivono i Vogon, meglio per voi).

Carlo Paolantonio: Far volare un palloncino di piombo

Maurizio De Angelis: Dopo mangiato, non si ha un peso sullo stomaco.

Giorgio, 10 anni: Giocare con l’acqua fluttuante

andreav @_an_vi_: Riuscire finalmente a schiacciare a canestro! maril pitt. @MarilPitt: Salire ai piani alti e fare a meno delle scale Javier Vázquez @senorcacomixtle: Mi piacerebbe di guardare come si comportano le bolle all’ aprire una bottiglia di champagne luca rossi @luca_lrs: Vorrei dormire come un pipistrello adrianamarcotulli @adrimarcotulli: Farei la palla! Aggiornamento del 27 ottobre:  Serena Abrate: Mi piacerebbe preparare un gustosissimo zabajone per poi lasciarlo libero di esser divorato mentre fluttua leggero!  Sabrina Provini: Avere una scrivania invisibile e appoggiare in modo ordinato …biro fogli libro…etc:) Bertilla Bertesina: Tenere sotto controllo le emozioni negative giocando con il LEGO 🙂 Sara Zolla: io vorrei provare a saltare alla corda! Katia: Con questi sbalzi di temperatura e raffreddori in arrivo, il naso non colerebbe!!! Lorenzo di Renzo: vorrei vedere il mio gatto fluttuare Maurizio De Angelis: Si ferma la caduta dei capelli. Alla prossima settimana con le prossime altre 53 cose da fare a gravità zero!    

Niente Panico

20/10/2014

Altre 53 cose da fare a gravità zero

La Guida galattica per autostoppisti, com’è noto, è il libro di maggiore successo pubblicato dalle grandi case editrici dell’Orsa Minore. Un degno concorrente è Altre 53 cose da fare a gravità zero. Di quest’ultima opera, però, non si conoscono né l’autore né il contenuto. Almeno non si conoscevano fino a oggi.

Un gruppo di ricercatori di Avamposto 42, in collaborazione con l’Accademia Antiquaria del Futuro Prossimo e Remoto, sostiene, infatti, di aver trovato stralci originali di Altre 53 cose da fare a gravità zero. Quel che rende molto discutibile l’originalità del ritrovamento, è che accanto alle frasi, appare il nome degli autori. Nomi piuttosto sospetti: date un’occhiata alla sezione L’equipaggio dell’Avamposto 42.

In ogni caso, vi proponiamo i 23 frammenti ritrovati.

Samantha Cristoforetti

Non avere mai i piedi per terra.

Non doverti mai chiedere: quali scarpe metto oggi?

Giocare a prendere una fragola al volo con la bocca senza paura che cada sul pavimento.

Avere la pelle sotto i piedi tenera come quella di un bimbo

Spostarsi con un soffio

Mettere le cose nel vano più alto dell’armadio senza l’aiuto del famigliare spilungone.

Non doversi mai più preoccupare di piantare chiodi: basta un po’ di velcro!

Giocare a chi arriva più lontano senza toccare le pareti (ma se sposti i sensori di flusso d’aria nei portelli russi sei squalificata!)

Non rifare il letto la mattina.

Far ruotare la tua casa in modo che gli amici in arrivo trovino facilmente l’entrata

Usare una bicicletta senza sella.

Gettare la bilancia, tanto segna sempre zero!

Tenere le cose da trasportare con le gambe mentre cammini con le mani.

  Antonio Pilello

Fare yoga a testa in giù.

Nuotare senza acqua.

Mangiare tantissimo e sentirmi comunque leggero

  Chiara Forin

Poter leggere un libro a letto senza doverlo tenere sollevato

Poter dare tutto un altro senso al costume da Superman ad Halloween (anche se gia’ Luca Parmitano ci ha pensato)

Cucinare senza aver paura di sporcare per terra…tanto niente cade!

Stefano Polato

Rompere un uovo e separare l’albume dal tuorlo

  Stefano Sandrelli

Avere la testa molto oltre le nuvole e sentirsi a posto così

Sapere di essere in caduta libera e riderci sopra

Poter essere pesanti e noiosi e riuscire a volare lo stesso

Ma soprattutto: che cosa fareste voi a gravità zero?

Scrivete alla redazione, postatelo su Facebook  o Twitter usando l’hashtag #53ZeroG, mandatelo per posta ordinaria, fate segnali di fumo, sbracciatevi, datevi da fare: scriviamo insieme questo “libro” di enorme successo. Non lasciamolo tutto agli autori di Avamposto 42, che scrivono peggio dei Vogon (e se non sapete come scrivono i Vogon, meglio per voi).

Stefano Sandrelli

Nella foto di questo post: i due astronauti NASA Carl Meade e Mark Lee testano il dispositivo semplificato di aiuto per le passeggiate spaziali (SAFER) al di fuori della Stazione Spaziale Internazionale.

Niente Panico

17/10/2014